HOME > 상세정보

상세정보

Graph neural networks : foundations, frontiers, and applications

Graph neural networks : foundations, frontiers, and applications (2회 대출)

자료유형
단행본
개인저자
Wu, Lingfei. Cui, Peng. Pei, Jian. Zhao, Liang.
서명 / 저자사항
Graph neural networks : foundations, frontiers, and applications / Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao, editors.
발행사항
Singapore :   Springer,   2022.  
형태사항
xxxvi, 689 p. : ill. (some col.) ; 24 cm.
ISBN
9789811660535 9811660530
서지주기
Includes bibliographical references (p. 595-689).
일반주제명
Neural networks (Computer science).
000 00000cam u2200205 a 4500
001 000046155619
005 20230804090640
008 230803s2022 si a b 000 0 eng d
020 ▼a 9789811660535
020 ▼a 9811660530
035 ▼a (KERIS)BIB000016196779
040 ▼a 211029 ▼c 211029 ▼d 211009
050 4 ▼a QA76.87
082 0 4 ▼a 006.3/2 ▼2 23
084 ▼a 006.32 ▼2 DDCK
090 ▼a 006.32 ▼b G766
245 0 0 ▼a Graph neural networks : ▼b foundations, frontiers, and applications / ▼c Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao, editors.
260 ▼a Singapore : ▼b Springer, ▼c 2022.
300 ▼a xxxvi, 689 p. : ▼b ill. (some col.) ; ▼c 24 cm.
504 ▼a Includes bibliographical references (p. 595-689).
650 0 ▼a Neural networks (Computer science).
700 1 ▼a Wu, Lingfei.
700 1 ▼a Cui, Peng.
700 1 ▼a Pei, Jian.
700 1 ▼a Zhao, Liang.
945 ▼a ITMT

소장정보

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/Sci-Info(2층서고)/ 청구기호 006.32 G766 등록번호 121263733 도서상태 대출가능 반납예정일 예약 서비스 B M

컨텐츠정보

목차

Chapter 1. Representation Learning.- Chapter 2. Graph Representation Learning.- Chapter 3. Graph Neural Networks.- Chapter 4. Graph Neural Networks for Node Classification.- Chapter 5. The Expressive Power of Graph Neural Networks.- Chapter 6. Graph Neural Networks: Scalability.- Chapter 7. Interpretability in Graph Neural Networks.- Chapter 8. "Graph Neural Networks: Adversarial Robustness".- Chapter 9. Graph Neural Networks: Graph Classification.- Chapter 10. Graph Neural Networks: Link Prediction.- Chapter 11. Graph Neural Networks: Graph Generation.- Chapter 12. Graph Neural Networks: Graph Transformation.- Chapter 13. Graph Neural Networks: Graph Matching.- Chapter 14. "Graph Neural Networks: Graph Structure Learning". Chapter 15. Dynamic Graph Neural Networks.- Chapter 16. Heterogeneous Graph Neural Networks.- Chapter 17. Graph Neural Network: AutoML.- Chapter 18. Graph Neural Networks: Self-supervised Learning.- Chapter 19. Graph Neural Network in Modern Recommender Systems.- Chapter 20. Graph Neural Network in Computer Vision.- Chapter 21. Graph Neural Networks in Natural Language Processing.- Chapter 22. Graph Neural Networks in Program Analysis.- Chapter 23. Graph Neural Networks in Software Mining.- Chapter 24. "GNN-based Biomedical Knowledge Graph Mining in Drug Development".- Chapter 25. "Graph Neural Networks in Predicting Protein Function and Interactions".- Chapter 26. Graph Neural Networks in Anomaly Detection.- Chapter 27. Graph Neural Networks in Urban Intelligence.

관련분야 신착자료

Gross, Carson (2023)