000 | 00000nam c2200205 c 4500 | |
001 | 000046151327 | |
005 | 20230616090103 | |
007 | ta | |
008 | 230607s2023 ulkad 000a kor | |
020 | ▼a 9791191905335 ▼g 03320 | |
040 | ▼a 211009 ▼c 211009 ▼d 211009 | |
082 | 0 4 | ▼a 006.312023 ▼2 23 |
085 | ▼a 006.312023 ▼2 DDCK | |
090 | ▼a 006.312023 ▼b 2023 | |
245 | 0 0 | ▼a 데이터 과학자 원칙 = ▼x Data scientist principle : ▼b 데이터 리더 9인이 말하는 더 나은 데이터 과학자로 살아가는 원칙과 철학 / ▼d 이정원 [외]공저 |
260 | ▼a 서울 : ▼b Golden Rabbit, ▼c 2023 | |
300 | ▼a 270 p. : ▼b 삽화(일부천연색), 도표 ; ▼c 22 cm | |
500 | ▼a 공저자: 권시현, 권정민, 김영민, 김진환, 박준석, 변성윤, 이진형, 이제현 | |
700 | 1 | ▼a 이정원, ▼e 저 |
700 | 1 | ▼a 권시현, ▼e 저 |
700 | 1 | ▼a 권정민, ▼e 저 |
700 | 1 | ▼a 김영민, ▼e 저 |
700 | 1 | ▼a 김진환, ▼e 저 |
700 | 1 | ▼a 박준석, ▼e 저 |
700 | 1 | ▼a 변성윤, ▼e 저 |
700 | 1 | ▼a 이진형, ▼e 저 |
700 | 1 | ▼a 이제현, ▼e 저 |
Holdings Information
No. | Location | Call Number | Accession No. | Availability | Due Date | Make a Reservation | Service |
---|---|---|---|---|---|---|---|
No. 1 | Location Main Library/Monographs(3F)/ | Call Number 006.312023 2023 | Accession No. 111881479 | Availability Available | Due Date | Make a Reservation | Service |
No. 2 | Location Science & Engineering Library/Sci-Info(Stacks1)/ | Call Number 006.312023 2023 | Accession No. 121263345 | Availability Available | Due Date | Make a Reservation | Service |
No. 3 | Location Science & Engineering Library/Sci-Info(Stacks1)/ | Call Number 006.312023 2023 | Accession No. 121263383 | Availability Available | Due Date | Make a Reservation | Service |
No. 4 | Location Medical Library/Monographs(3F)/ | Call Number 006.312023 2023 | Accession No. 131057523 | Availability Available | Due Date | Make a Reservation | Service |
No. | Location | Call Number | Accession No. | Availability | Due Date | Make a Reservation | Service |
---|---|---|---|---|---|---|---|
No. 1 | Location Main Library/Monographs(3F)/ | Call Number 006.312023 2023 | Accession No. 111881479 | Availability Available | Due Date | Make a Reservation | Service |
No. | Location | Call Number | Accession No. | Availability | Due Date | Make a Reservation | Service |
---|---|---|---|---|---|---|---|
No. 1 | Location Science & Engineering Library/Sci-Info(Stacks1)/ | Call Number 006.312023 2023 | Accession No. 121263345 | Availability Available | Due Date | Make a Reservation | Service |
No. 2 | Location Science & Engineering Library/Sci-Info(Stacks1)/ | Call Number 006.312023 2023 | Accession No. 121263383 | Availability Available | Due Date | Make a Reservation | Service |
No. | Location | Call Number | Accession No. | Availability | Due Date | Make a Reservation | Service |
---|---|---|---|---|---|---|---|
No. 1 | Location Medical Library/Monographs(3F)/ | Call Number 006.312023 2023 | Accession No. 131057523 | Availability Available | Due Date | Make a Reservation | Service |
Contents information
Book Introduction
“데이터 과학자는 뭐하는 사람일까? 지금처럼 하면 되는 것일까? 나도 선배 데이터 과학자들처럼 성장할 수 있을까? 3년 10년 후에도 생존할 수 있을까? 데이터 분석 환경이 이다지도 척박한데 어떻게 데이터 분석을 한단 말인가? 팀워크는, 팀빌딩은 도대체 어떻게 해야 하는 걸까?”
데이터 과학자로 살아가면서 하루에도 천 번을 되묻는 물음에 아마존, IDT, 빅쏠, 우아한형제들, 코드스테이츠, 쏘카, 삼성전자, 11번가, 페블러스 전현직 데이터 과학자 9명이 답한다. 데이터 과학자, 데이터 엔지니어, 데이터 분석가뿐만 아니라 데이터를 활용하는 비즈니스 조직의 리더라면 지금까지 만나볼 수 없었던 생존과 성장의 원칙에서 자신만의 해답을 찾아보자.
★ 더 나은 데이터 과학자로 성장을 꿈꾼다면
★ 먼저 헤쳐온 데이터 리더들의 원칙에서 해답을 찾아보세요
“데이터 과학자는 뭐하는 사람일까? 지금처럼 하면 되는 것일까? 나도 선배 데이터 과학자들처럼 성장할 수 있을까? 3년 10년 후에도 생존할 수 있을까? 데이터 분석 환경이 이다지도 척박한데 어떻게 데이터 분석을 한단 말인가? 팀워크는, 팀빌딩은 도대체 어떻게 해야 하는 걸까?” 데이터 과학자로 살아가면서 하루에도 천 번을 되묻는 물음에 아마존, IDT, 빅쏠, 우아한형제들, 코드스테이츠, 쏘카, 삼성전자, 11번가, 페블러스 전현직 데이터 과학자 9명이 답합니다. 데이터 과학자, 데이터 엔지니어, 데이터 분석가뿐만 아니라 데이터를 활용하는 비즈니스 조직의 리더라면 지금까지 만나볼 수 없었던 생존과 성장의 원칙에서 자신만의 해답을 찾아보세요.
* 원칙 : 앞서 경험한 선배가 발견한 10년이 지나도 변치 않을 업의 방정식
★ 더 크게 성장하려면 기술 말고도 원칙이 필요합니다
하버드 비즈니스 리뷰는 〈데이터 사이언티스트: 21세기 가장 섹시한 직업〉이라는 글을 발표했습니다. 머신러닝과 딥러닝이 세상을 뒤흔들고, 새로운 기법을 소개하는 논문과 LLaMA, 챗GPT, 바드 같은 킬러 인공지능 애플리케이션이 하루가 멀다 하고 등장합니다. 빠르게 변화하는 데이터 과학 영역에서 데이터 과학자는 어떻게 생존을 넘어 성장할 수 있을까요? 어떻게 비즈니스의 궁극의 목표를 달성하는 데 이바지할 수 있을까요? 기술 말고 내공 있는 데이터 리더로서 성장하는 데 도움을 주는, 10년 이상 변치 않는 원칙을 알려주는 선배가 필요합니다. 그래서 이 책을 준비했습니다. 이 책은 데이터 리더 9명이 각자의 원칙을 제시합니다.
★ 이 책의 대상 독자
_데이터 과학자, 데이터 엔지니어, 데이터 분석가
_데이터로 비즈니스를 이끄는 리더
_평생 데이터 과학자를 꿈꾸는 분
_데이터 과학을 하는 더 나은 방법이 궁금한 분
_다양한 난제를 풀 원칙이 필요한 분
_조직을 성장시키고 싶은 데이터 과학자 리더
_조직 생활과 이직에 고민이 많으신 분
_효율적으로 일하는 방식에 고민이 많은 분
★ 루틴하게 점진적으로 작동하는 팀워크
“20년 동안 연구원 생활을 하고, 스타트업을 창업해 2년째 운영합니다.
좋은 사람들과 즐겁게 일하는 것을 최고의 가치로 여기며,
제가 경험한 팀워크의 원칙을 소개합니다.”
소통은 어렵고 팀워크는 귀한 것입니다. 스포츠팀 감독들은 선수 개개인의 능력을 최대한으로 끌어내는 것 이상으로 그들을 하나의 팀으로 만들기 위해 노력합니다. 팀워크는 개인의 합 이상의 성과를 가져오기 때문입니다. 팀워크가 제대로 작동할 때 막강한 팀이 됩니다.
협업은 즐겁기도 하지만 고되기도 합니다. 팀워크와 협업은 쉽게 얻을 수 있는 것이 아닙니다. 프로세스를 갖추기 위해서 많은 시행착오를 겪으며, 성격이 제각각인 여러 멤버를 설득해야 합니다. 저는 연구소 안팎에서 조직 문화와 팀워크를 고민하며 다양한 실험을 해보았습니다. 그중 몇 가지 사례를 소개합니다.
(이정원_ 페블러스 공동창업자 / 부대표)
★ 데이터 사이언티스트 생존 무기 만들기
“수많은 데이터 과학자 사이에서 경쟁해 살아남으려면
나만의 차별화된 무기가 필요합니다.
어떻게 무기를 만들어가야 하는지 소개합니다.”
학부 시절 사회학을 전공한 문과 출신으로 커리어를 시작했으나, 조금씩 숫자와 컴퓨터에 다가가다 보니 지금은 미국에서 데이터 과학자로 일합니다. 컴퓨터공학이나 통계 전공자들에 비해서는 기반이 아무래도 약할 수 있기 때문에 데이터 과학자로서 다소 불안정한 위치에 있다는 생각이 들 때도 있습니다. 하지만 이러한 상황에서도 실무에서 환영받는 결과를 얻어내는 실력을 갖춘다면, 차별화된 데이터 과학자로서 활약할 수 있다는 희망을 전합니다.
(권시현_ IDT Corporation 데이터 과학자)
★ 척박한 데이터 환경에서 살아남은 사람들의 우화
“기업이 피봇팅을 할 때, 데이터에 접근하기 힘들 때,
데이터가 없을 때 등의 척박한 데이터 환경에서
데이터 분석가가 살아남는 방법을 이야기합니다.”
다양한 업계에서 데이터를 분석해온 지 수년이 훌쩍 지났습니다. 그간 데이터 업계도 굉장히 빠른 속도로 변해왔고, 제 업무 환경 역시 빠르게 변해왔습니다. 여러 회사에서 데이터를 분석하면서 회사마다 데이터 환경이 굉장히 다르다는 것을 깨달았습니다. 회사 규모, 연혁, 서비스 형태, 도메인 분야 등에 따라서 데이터를 사용하는 환경, 분석을 활용하는 정도도 천차만별입니다. 물론 대부분의 업과 마찬가지로 데이터 분석업 역시 어느 정도 유연성을 가지고 업무를 해나가야 하지만, 간혹 정말로 어떻게 해야 하나 싶은 때를 만나게 됩니다. 어렵지만 아무도 도와줄 수 없는 것 같을 때, 어떤 마음으로 업에 임하고 어떻게 자신의 능력을 보이며 살아남을 수 있을지 이야기해보고자 합니다.
(권정민_ 데이터 과학자, ML GDE)
★ 시작하는 데이터 사이언티스트를 위한 개발과 운영 지침서
“지적 호기심이 많고 숫자를 통해 현실 속 문제를 해결하는 것에 재미를 느끼는 사람이라면,
데이터 과학자라는 직업을 사랑할 수밖에 없을 겁니다.
새로 시작하는 데이터 과학자를 위해 짧지만 나름의 경험이 담긴
지침서를 작성하였습니다.”
금융공학을 공부하고 증권가에서 퀀트로 일하다가, 다섯 해가 넘으니 답답한 마음이 들었습니다. 모두가 만류했지만 저는 용기를 내어 회사에 사직서를 제출하고, 데이터 과학자로 새 출발을 했습니다. 사실 처음 몇 년은 매우 힘들었습니다. 연차는 있지만 선형 모델 하나도 다룰 줄 모르는 등 신입보다도 부족한 점이 많았습니다. 모자란 실력을 채우기 위해 밤낮 없이 노력했습니다.
이 분야는 변화하는 속도가 빠르며, 새로운 기술이 끝없이 쏟아져 나오는 곳입니다. 저처럼 어려움을 겪을 새로 시작하는 데이터 과학자들을 위해 ML 모델 개발과 운영에 필요한 지침서를 작성해봤습니다. 이 글이 험난한 항해에서 방향을 잡아주는 북극성이 되어주길 바랍니다.
(김영민_ 아마존 웹 서비스 데이터 과학자)
★ 데이터 분석의 본질에 집중하기
“더 나은 데이터 분석 방법이 하루가 멀다고 발표됩니다.
새로운 기법을 다 익히지 못해 조급한 분들에게 말하고 싶습니다.
데이터 분석의 본질은 형식에 있지 않습니다.”
공학과 교육, 금융, 의학 연구 분야에서 연구원, 데이터 과학자, 데이터 분석가, 개발자로 역할을 바꿔가며 데이터 주변인으로 살고 있습니다. 다루는 데이터와 업무는 바뀌었지만, 데이터를 다루는 본질은 한 번도 변하지 않았다고 생각합니다. 하수는 형식을 취하고 고수는 본질을 꿰뚫습니다. 데이터 분석의 본질을 달성하는 아주 간단한 초식 4가지를 소개합니다.
(김진환_ 차라투 데이터 프로덕트 개발자)
★ 데이터 과학자의 ‘기술 부채’ 갚기
“기술 부채는 개발자만의 전유물일까요? 아닙니다.
데이터 과학자도 때로는
기술 부채를 갚아야 합니다.”
데이터 과학자를 꿈꾸다가 막상 데이터 분석 업계에 몸을 담으면 캐글 같은 웹사이트에서 챌린지에 도전할 때와는 상당히 다른 현실을 만나게 될 겁니다. 현실을 헤쳐나가다 보면 ‘기술 부채’가 쌓입니다. 기술 부채는 개발자들이 흔히 이야기하는 개념이지만 사실 데이터 과학자에게도 똑같이 적용됩니다. 데이터 과학자들은 개발자가 아니라는 이유로 그리고 바쁘다는 이유로 무시하곤 하죠. 하지만 그런 부채가 계속 쌓이면 어느 시점이 되면 감당할 수 없게 되는 것은 개발이나 분석이나 마찬가지입니다. 기술 부채를 다루는 저만의 원칙을 알려드리겠습니다.
(박준석_ 미국 핀테크 회사 시니어 리서치 사이언티스트)
★ 메타인지와 액션으로 점진적으로 성장하기
“자신이 무엇을 아는지, 모르는지를 나타내는
메타인지 상승을 도와준 제 원칙을 소개합니다.
여러분도 메타인지를 갖추어 자신을 더욱 이해해보길 기원합니다.”
데이터 분석가로 시작해 데이터 엔지니어, 머신러닝 엔지니어, MLOps, 데이터 조직의 엔지니어링 매니저, 코치 등 다양한 업무를 진행하며 성장했습니다.
여러 경험을 하면서 자신을 잘 아는 것이 중요하단 생각을 시작으로 메타인지에 대해 고민하고, 적용하다 보니 저의 원칙이 하나씩 생겼습니다. 이 원칙들이 쌓여서 제가 일할 때 활용하는 기준이 되었고, 지금도 계속 새로운 원칙이 생깁니다. 여러분의 원칙을 세우실 때 참고할 수 있는 원칙들을 공유하겠습니다.
(변성윤_ 카일스쿨 데이터 코치)
★ 데이터로 고객을 움직이는 데이터팀이 되어가는 여정
“분석에 사용할 데이터와 시스템이 없는 상황에 놓인
데이터 과학자 분들께
제 경험이 조금이나마 도움이 되길 바랍니다.”
데이터 팀이 없던 곳으로 이직을 했습니다. 혼자서 제품의 현황을 파악하기 위한 분석을 진행하고, 데이터 분석에 필요한 시스템을 구축하고, 로그를 설계하고 데이터를 함께 분석할 팀을 만들고자 고군분투했습니다. 힘들고 어려웠지만 여러 난관을 헤치고 현재는 비즈니스에 필요한 인사이트를 뽑아낼 분석 시스템 기반으로 데이터를 분석할 동료와 함께 일합니다.
저처럼 아무것도 없는 상황에서 무언가를 만들어가는 상황에 맞닥뜨린 데이터 분석가에게 제 경험을 공유합니다.
(이진형_ 빅쏠 데이터인사이트팀 리드 데이터 과학자)
★ 전달력을 높이는 시각화 디자인 원칙
“면접장에 들어서는 지원자처럼, 너무 튀지 않으면서도 단정하게
정리된 데이터는 보는 이의 마음속에 편안히 들어설 수 있습니다.
반대로 화려한 연출로 주의를 끌어야 할 때도 있습니다.
잘 모르는 이들에게 데이터의 가치를 전달하고픈 여러분께
데이터 시각화의 원칙을 소개합니다.”
공학을 전공했지만 숫자보다 그림이 더 친근하게 느껴지는 데이터 과학자입니다. 화려한 인공지능 기술이 연일 공개되는 요즘이지만, 정작 ‘내 일’에 인공지능 기술을 적용하려면 ‘내 데이터’에 대한 통찰과 함께 관련된 사람들과의 의사소통이 중요함을 느낍니다.
백번 듣는 것보다 한 번 보는 것이 낫다는 말도 있습니다. 특히나 내 분야 밖의 사람들일수록 용어 사용 등 언어적 제약이 커지기 때문에 그림의 힘이 더 중요합니다. 서류 한 장에 담긴 조각 그림 몇 장과 몇 마디 말로 몇 달의 노력을 평가받을 때가 많습니다. 스스로에게 미안해지는 상황이 연출되지 않도록 자그마한 도움이나마 드리고 싶습니다.
(이제현_ 한국에너지기술연구원 책임연구원)
Information Provided By: :

Author Introduction
권정민(지은이)
세상은 데이터로 이루어져 있다고 생각하며, 이를 잘 활용하기 위해 다양한 산업군에서 데이터 분석 및 활용 방안을 연구합니다. 카이스트 및 포항공과대학교에서 산업공학과 전산학을 전공했으며, ML GDE(Machine Learning Google Developer Experts)로도 활동합니다. _현) 데이터 과학자, ML GDE _전) ODK Media 데이터 분석가 _전) 우아한형제들 데이터 분석가 _전) SK플래닛 데이터 분석가 저역서 _《데이터 분석가의 숫자유감》, 《데이터를 엮는 사람들 데이터 과학자》 저 _《빅데이터 분석 도구 R 프로그래밍》, 《The R Book(Second Edition) 한국어판》, 《딥러닝과 바둑》 역 _《딥러닝 레볼루션》, 《인터넷, 알고는 사용하니?》 감수
이정원(지은이)
데이터의 정원을 가꾸며 살아가는 이정원입니다. 책과 사람에 쉽게 매료되고, 과학과 예술을 흠모하며, 미술관과 재즈바에 머물기를 좋아합니다. 일상을 데이터로 정리하는 것에 흥미가 있으며, 트레바리 클럽장으로 〈내 인생의 조각모음〉 클럽을 운영하고, 세바시에서 〈내 삶의 밀도를 높이는 과학적 방법〉을 강연했습니다. _현) 페블러스 공동창업자/부대표 _전) 한국전자통신연구원(ETRI) 책임연구원 저역서 _《생각의 기원》 역 _《파이썬 예제와 함께하는 강화 학습 입문》 공역
변성윤(지은이)
경영학을 전공하고 광고, 디자인, 공기업, 창업 등을 경험하다가 데이터의 매력에 빠져 데이터에 정착했습니다. 기술 블로그 〈어쩐지 오늘은〉과 유튜브 〈카일스쿨〉에서 데이터 관련 내용을 공유합니다. 네이버 커넥트 재단의 〈부스트캠프 AI Tech〉에서 프로덕트 서빙(Product Serving), 러닝 마스터를 담당하고 있으며 인프런에서 강의를 합니다. _현) 카일스쿨 데이터 코치 _전) 쏘카 데이터 과학자, 데이터 조직 Engineering Manager _전) 레트리카 데이터 분석가 겸 데이터 엔지니어 _전) 그래두(Gredoo) 창업 저역서 _《구글 빅쿼리 완벽 가이드》 역
박준석(지은이)
미 오하이오 주립대 계량심리학 박사. 대학에서는 양적 연구방법론을 연구하며 연구의 통계적 엄밀함과 재현성을 높이는 데 관심이 많았습니다. 업계로 오고 나서는 통계학과 기계학 방법론을 다양하게 응용하며 가치를 창출하는 일을 합니다. _현) 미국 핀테크 회사 리서치 사이언티스트 _전) Lowe’s Home Improvement 데이터 과학자 _전) Amazon.com 응용 사이언티스트 저역서 _《가짜뉴스의 심리학》 저 _《데이터 과학자의 일》 저 _《3일 만에 끝내는 코딩 통계》 저
이진형(지은이)
데이터에 숨어 있는 인사이트를 찾는 일을 좋아합니다. 11번가에서 데이터 엔지니어와 데이터 과학자 역할 사이에서 판매자와 구매자가 사용하는 개인화 추천 서비스를 제공하기 위해 데이터 파이프라인과 데이터 모델을 개발했습니다. 현재는 카드 혜택 통합 관리 테크핀 스타트업 빅쏠에서 데이터 과학자로 일합니다. _현) 빅쏠 데이터인사이트팀 리더 _전) 11번가 데이터 과학자 _전) 위세아이텍 데이터 과학자
권시현(데싸노트)(지은이)
삼성전자 무선사업부에서는 스마트폰에서 수집된 데이터를 이용해 인사이트 도출 및 데이터 기반 의사결정에 기여했고, 현재는 미국에서 해외 송금 서비스 앱 관련된 데이터를 주로 다룹니다. 사기 탐지, 고객 이탈 예측 등을 위한 모델링 작업을 수행했습니다. ‘데싸노트’ 유튜브 채널을 운영하며 머신러닝과 미국 취업에 대한 이야기를 공유합니다. _현) IDT Corporation 데이터 사이언티스트 _전) 콜롬비아 대학교 머신러닝 튜터 _전) 삼성전자 무선사업부 앱스토어 데이터 분석가 저역서 _《Must Have 데싸노트의 실전에서 통하는 머신러닝》 저
김영민(지은이)
금융공학으로 파생상품 가치를 평가하는 증권사 퀀트로 일했습니다. 2015년 커리어를 바꾸어 IT와 금융 업계에서 데이터 과학자 및 ML 엔지니어로 일하면서 다양한 ML 서비스 론칭에 기여했습니다. 현재 AWS에서 엔터프라이즈의 비즈니스 문제를 머신러닝으로 해결하면서 고객 성공을 지원합니다. _현) 아마존 웹 서비스 데이터 과학자 _전) 현대카드 ML 엔지니어 _전) 넷마블 게임즈 데이터 과학자 _전) 신영증권 리스크 퀀트, CFA 저역서 _《머신러닝 시스템 설계》 공역
김진환(지은이)
UNIST 생명공학 박사. 데이터 분석과 개발을 하는 데발자로 블로그와 요즘IT에 글을 씁니다. 생명과학과, 컴퓨터과학을 공부했지만 어쩌다 보니 데이터 분야에서 커리어를 시작했습니다. 여러 커뮤니티에서 다양한 사람을 만나며 데이터와 비즈니스를 경험했고, 최소한의 데이터로 세상에 기여하겠다는 마음을 갖게 되었습니다. 지금은 의학 연구자들을 위한 데이터 프로덕트를 개발하고 있으며, 독서와 글쓰기, 고양이를 좋아하고 CRAN 기여자로서 R과 Shiny의 부흥을 꿈꾸고 있습니다. _현) 차라투 데이터 프로덕트 개발자 _현) Udacity 데이터 사이언스 멘토 _전) 피플펀드컴퍼니 데이터 분석가 _전) 코드스테이츠 데이터 과학자
이제현(지은이)
숫자의 숲에 가려진 데이터의 메시지를 탐구합니다. 인공지능 기술의 현실 적용에 관심이 많으며, 기술과 사람 간 소통의 핵심에 데이터 시각화가 있다고 믿습니다. 눈에 보이지 않는 수학적 패턴을 전달하고자 하며 데이터 시각화 기술뿐 아니라 인지과학과 디자인에도 관심이 많습니다. _현) 마이크로소프트 MVP _현) 한국에너지기술연구원 책임연구원 _전) 삼성전자 종합기술원, 반도체연구소 _전) 서울대학교 재료공학부 연구교수

Table of Contents
01 루틴하게 점진적으로 작동하는 팀워크 __풀스택 연구자 __회고에서 싹튼 팀워크 __매일 오전의 코워킹 활동, 오메가 __점진적인 보고서, 점보 02 데이터 과학자 생존 무기 만들기 __미국에서 데이터 과학자 __데이터 사이언티스트가 되기까지 여정 __교과서적인 데이터 분석 방법 __차별화된 데이터 분석 방법 03 척박한 데이터 환경에서 살아남은 사람들의 우화 __우화 1 : 너는 전문가니까, 너가 알아서 잘 할 거야?! __우화 2 : 벽 너머의 데이터 __우화 3 : 저기 저 차가운 바닥에서 다시 __세 우화의 교훈과 숨겨진 이야기 04 시작하는 데이터 과학자를 위한 개발과 운영 지침서 __문제 정의 단계 __데이터 준비와 피처 엔지니어링 단계 __모델 개발과 평가 단계 __배포와 운영 단계 05 데이터 분석의 본질에 집중하기 __목적을 명확히 하고 과정을 살피자 __익숙하지 않은 다양한 시도를 하자 __더 잘 공감할 수 있는 사람들과 함께 성장하자 __때로는 단순한 것만으로도 충분하다 06 데이터 과학자의 ‘기술 부채’ 갚기 __캐글과는 다른 데이터 과학자/분석가의 실제 하루 __분석도 엔지니어링의 일부 __모르면 배웁시다 07 메타인지와 액션으로 점진적으로 성장하기 __의도적으로 남다른 선택해보기 __주기적으로 일하는 목적 찾기 __제너럴리스트, 스페셜리스트 이분법으로 생각하지 않기 __업무도 메타인지하며 목적 중심으로 생각하기 __나의 세상 정의하기 __회사에서 필요한 일과 내 흥미를 일치시키기 __팀 현황을 파악해서 개선점 만들기 __더 나은 커뮤니케이션 능력 기르기 __비즈니스 모델과 데이터의 접점 분석하기 __지금 힘들다면 여유가 있는지 생각해보기 08 데이터로 고객을 움직이는 데이터팀이 되어가는 여정 __데이터팀을 선택하는 일곱 가지 기준 __팀 미션 확인하기 __분석 플랫폼 정하기 __매일 사라지는 중간 결과 데이터 문제 해결하기 __고객 유입 경로 데이터를 만들고 분석하기 __반복되는 분석 요청을 대시보드로 만들기 09 전달력을 높이는 시각화 디자인 원칙 __현실 : 정보 전달은 생각보다 어렵다 __원칙 1 : 뇌와 자극 반응에 대한 지식 쌓기 __원칙 2 : 지식을 실천할 기술 연마하기 __원칙 3 : 대중에게 공개하고 반응 살피기