HOME > 상세정보

상세정보

Bayes rules! : an introduction to Bayesian modeling with R

Bayes rules! : an introduction to Bayesian modeling with R

자료유형
단행본
개인저자
Johnson, Alicia A. Ott, Miles Q., author. Dogucu, Mine, author.
서명 / 저자사항
Bayes rules! : an introduction to Bayesian modeling with R / Alicia A. Johnson, Miles Ott, Mine Dogucu.
발행사항
Boca Raton :   CRC Press,   2022.  
형태사항
xxi, 521 p. : ill. (some col.) ; 27 cm.
총서사항
Chapman & Hall/CRC texts in statistical science
ISBN
9780367255398 9781032191591
서지주기
Includes bibliographical references and index.
일반주제명
Bayesian statistical decision theory. R (Computer program language).
000 00000cam u2200205 a 4500
001 000046140890
005 20230206183325
008 230206s2022 flua b 001 0 eng
010 ▼a 2021037969
020 ▼a 9780367255398 ▼q (paperback)
020 ▼a 9781032191591 ▼q (hardback)
020 ▼z 9780429288340 ▼q (ebook)
035 ▼a (KERIS)REF000019702255
040 ▼a DLC ▼b eng ▼e rda ▼c DLC ▼d DLC ▼d 211009
042 ▼a pcc
050 0 0 ▼a QA279.5 ▼b .J64 2022
082 0 0 ▼a 519.5/42 ▼2 23
084 ▼a 519.542 ▼2 DDCK
090 ▼a 519.542 ▼b J66b
100 1 ▼a Johnson, Alicia A.
245 1 0 ▼a Bayes rules! : ▼b an introduction to Bayesian modeling with R / ▼c Alicia A. Johnson, Miles Ott, Mine Dogucu.
260 ▼a Boca Raton : ▼b CRC Press, ▼c 2022.
264 1 ▼a Boca Raton : ▼b CRC Press, ▼c 2022.
300 ▼a xxi, 521 p. : ▼b ill. (some col.) ; ▼c 27 cm.
336 ▼a text ▼b txt ▼2 rdacontent
337 ▼a unmediated ▼b n ▼2 rdamedia
338 ▼a volume ▼b nc ▼2 rdacarrier
490 1 ▼a Chapman & Hall/CRC texts in statistical science
504 ▼a Includes bibliographical references and index.
650 0 ▼a Bayesian statistical decision theory.
650 0 ▼a R (Computer program language).
700 1 ▼a Ott, Miles Q., ▼e author.
700 1 ▼a Dogucu, Mine, ▼e author.
830 0 ▼a Chapman and Hall/CRC texts in statistical science.
945 ▼a ITMT

소장정보

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 중앙도서관/서고7층/ 청구기호 519.542 J66b 등록번호 111875901 도서상태 대출가능 반납예정일 예약 서비스 B M

컨텐츠정보

목차

1 The Big (Bayesian) Picture 2 Bayes'' Rule 3 The Beta-Binomial Bayesian Model 4 Balance and Sequentiality in Bayesian Analyses 5 Conjugate Families 6 Approximating the Posterior 7 MCMC Under the Hood 8 Posterior Inference and Prediction 9 Simple Normal Regression 10 Evaluating Regression Models 11 Extending the Normal Regression Model 12 Poisson and Negative Binomial Regression 13 Logistic Regression 14 Naive Bayes Classification 15 Hierarchical Models are Exciting 16 (Normal) Hierarchical Models Without Predictors 17 (Normal) Hierarchical Models With Predictors 18 Non-Normal Hierarchical Regression & Classification 19 Adding More Layers

관련분야 신착자료

인하대학교. 통계학과 (2022)
구자용 (2022)
김현중 (2022)
Ross, Sheldon M (2022)
Arguin, Louis-Pierre (2022)