HOME > 상세정보


Fundamentals of quantum computing : theory and practice

Fundamentals of quantum computing : theory and practice (1회 대출)

Kasirajan, Venkateswaran.
서명 / 저자사항
Fundamentals of quantum computing : theory and practice / Venkateswaran Kasirajan.
Cham :   Springer,   2021.  
xxix, 463 p. : ill. (chiefly col.) ; 26 cm.
Includes bibliographical references and index.
Quantum computing.
000 00000nam u2200205 a 4500
001 000046132032
005 20221026165844
008 221026s2021 sz a b 001 0 eng d
020 ▼a 9783030636913
040 ▼a 211009 ▼c 211009 ▼d 211009
050 4 ▼a QA76.889
082 0 4 ▼a 006.3/843 ▼2 23
084 ▼a 006.3843 ▼2 DDCK
090 ▼a 006.3843 ▼b K19f
100 1 ▼a Kasirajan, Venkateswaran.
245 1 0 ▼a Fundamentals of quantum computing : ▼b theory and practice / ▼c Venkateswaran Kasirajan.
260 ▼a Cham : ▼b Springer, ▼c 2021.
300 ▼a xxix, 463 p. : ▼b ill. (chiefly col.) ; ▼c 26 cm.
504 ▼a Includes bibliographical references and index.
650 0 ▼a Quantum computing.
945 ▼a ITMT


No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 중앙도서관/서고6층/ 청구기호 006.3843 K19f 등록번호 111870485 도서상태 대출중 반납예정일 2023-04-26 예약 예약가능 R 서비스 M



PART ONE 1 Foundations of Quantum Mechanics 1.1 Matter 1.2 Atoms, Elementary Particles, and Molecules 1.3 Light and Quantization of Energy 1.4 Electron Configuration 1.5 Wave-Particle Duality and Probabilistic Nature 1.6 Wavefunctions and Probability Amplitudes 1.7 Some exotic states of matter 1.8 Summary 1.9 Practice Problems 1.10 References and further reading 2 Dirac''s bra-ket notation and Hermitian Operators2.1 Scalars 2.2 Complex Numbers 2.3 Vectors 2.4 Matrices 2.5 Linear Vector Spaces 2.6 Using Dirac''s bra-ket notation 2.7 Expectation Values and Variances2.8 Eigenstates, Eigenvalues and Eigenfunctions2.9 Characteristic Polynomial 2.10 Definite Symmetric Matrices 2.11 Tensors2.12 Statistics and Probability2.13 Summary 2.14 Practice problems2.15 References and further reading3 The Quantum Superposition Principle and Bloch Sphere Representation3.1 Euclidian Space3.2 Metric Space3.3 Hilbert space.3.4 Schrodinger Equation3.5 Postulates of Quantum Mechanics3.6 Quantum Tunneling3.7 Stern and Gerlach Experiment3.8 Bloch sphere representation3.9 Projective Measurements3.10 Qudits3.11 Summary3.12 Practice Problems3.13 References and further readingPART TWO4 Qubit Modalities4.1 The vocabulary of quantum computing4.2 Classical Computers - a recap 4.3 Qubits and usability4.4 Noisy Intermediate Scale Quantum Technology4.5 Qubit Metrics4.6 Leading Qubit Modalities4.7 A note on the dilution refrigerator4.8 Summary4.9 Practice Problems4.10 References and further reading5 Quantum Circuits and DiVincenzo Criteria5.1 Setting up the development environment5.2 Learning Quantum Programming Languages 5.3 Introducing Quantum Circuits 5.4 Quantum Gates 5.5 The Compute Stage5.6 Quantum Entanglement5.7 No-Cloning theorem5.8 Quantum Teleportation5.9 Superdense coding5.10 Greenberger-Horne-Zeilinger state (GHZ state)5.11 Walsh-Hadamard Transform5.12 Quantum Interference5.13 Phase kickback5.14 DiVincenzo''s criteria for quantum computation5.15 Summary 5.16 Practice Problems5.17 References and further reading6 Quantum Communications6.1 EPR Paradox6.2 Density Matrix Formalism6.3 Von Neumann Entropy6.4 Photons6.5 Quantum Communication6.6 The Quantum Channel6.7 Quantum Communication Protocols6.8 RSA Security6.9 Summary6.10 Practice Problems6.11 References and further reading7 Quantum Algorithms7.1 Quantum Ripple Adder Circuit7.2 Quantum Fourier Transformation7.3 Deutsch-Jozsa oracle7.4 The Bernstein-Vazirani Oracle7.5 Simon''s algorithm7.6 Quantum arithmetic using QFT7.7 Modular exponentiation7.8 Grover''s search algorithm 7.9 Shor''s algorithm7.10 A quantum algorithm for k-means7.11 Quantum Phase Estimation (QPE)7.12 HHL algorithm for solving linear equations7.13 Quantum Complexity Theory7.14 Summary 7.15 Practice Problems7.16 References and further reading8 Adiabatic Optimization and Quantum Annealing8.1 Adiabatic evolution8.2 Proof of the Adiabatic Theorem8.3 Adiabatic optimization8.4 Quantum Annealing8.5 Summary8.6 Practice Problems8.7 References and further reading9 Quantum Error Correction9.1 Classical Error Correction9.2 Quantum Error Codes9.3 Stabilizer formalism9.4 The path forward - fault-tolerant quantum computing9.5 Surface codes9.6 Protected qubits9.7 Practice Problems9.8 References and further reading10 Conclusion10.1 How many qubits do we need?10.2 Classical simulation10.3 Backends today10.4 Future state10.5 References

관련분야 신착자료

Kneusel, Ronald T (2022)
Kneusel, Ronald T (2022)
한국교육학술정보원 (2022)