HOME > Detail View

Detail View

파이썬 라이브러리를 활용한 텍스트 분석 : 텍스트에서 통찰을 이끌어내는 98가지 자연어 처리 전략 (Loan 2 times)

Material type
단행본
Personal Author
Albrecht, Jens Ramachandran, Sidharth, 저 Winkler, Christian, 저 심상진, 역
Title Statement
파이썬 라이브러리를 활용한 텍스트 분석 : 텍스트에서 통찰을 이끌어내는 98가지 자연어 처리 전략 / 젠스 알브레히트, 싯다르트 라마찬드란, 크리스티안 윙클러 지음 ; 심상진 옮김
Publication, Distribution, etc
서울 :   한빛미디어,   2022  
Physical Medium
503 p. : 삽화 ; 24 cm
Varied Title
Blueprints for text analysis using Python : machine learning-based solutions for common real world (NLP) applications
ISBN
9791169210331
Bibliography, Etc. Note
참고문헌과 색인수록
Subject Added Entry-Topical Term
Natural language processing (Computer science) Python (Computer program language) Machine learning
000 00000nam c2200205 c 4500
001 000046131210
005 20221212123811
007 ta
008 221021s2022 ulka b 001a kor
020 ▼a 9791169210331 ▼g 93000
040 ▼a 211009 ▼c 211009 ▼d 211009
041 1 ▼a kor ▼h eng
082 0 4 ▼a 006.35 ▼2 23
085 ▼a 006.35 ▼2 DDCK
090 ▼a 006.35 ▼b 2022z1
100 1 ▼a Albrecht, Jens
245 1 0 ▼a 파이썬 라이브러리를 활용한 텍스트 분석 : ▼b 텍스트에서 통찰을 이끌어내는 98가지 자연어 처리 전략 / ▼d 젠스 알브레히트, ▼e 싯다르트 라마찬드란, ▼e 크리스티안 윙클러 지음 ; ▼e 심상진 옮김
246 1 9 ▼a Blueprints for text analysis using Python : ▼b machine learning-based solutions for common real world (NLP) applications
260 ▼a 서울 : ▼b 한빛미디어, ▼c 2022
300 ▼a 503 p. : ▼b 삽화 ; ▼c 24 cm
504 ▼a 참고문헌과 색인수록
650 0 ▼a Natural language processing (Computer science)
650 0 ▼a Python (Computer program language)
650 0 ▼a Machine learning
700 1 ▼a Ramachandran, Sidharth, ▼e
700 1 ▼a Winkler, Christian, ▼e
700 1 ▼a 심상진, ▼e
900 1 0 ▼a 알브레히트, 젠스, ▼e
900 1 0 ▼a 라마찬드란, 싯다르트, ▼e
900 1 0 ▼a 윙클러, 크리스티안, ▼e
945 ▼a ITMT

Holdings Information

No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Science & Engineering Library/Sci-Info(Stacks1)/ Call Number 006.35 2022z1 Accession No. 121261041 Availability Available Due Date Make a Reservation Service B M
No. 2 Location Science & Engineering Library/Sci-Info(Stacks1)/ Call Number 006.35 2022z1 Accession No. 121261338 Availability Available Due Date Make a Reservation Service B M
No. 3 Location Science & Engineering Library/Sci-Info(Stacks1)/ Call Number 006.35 2022z1 Accession No. 121261704 Availability Available Due Date Make a Reservation Service B M

Contents information

Book Introduction

텍스트에서 좋은 정보를 찾는 이가 뛰어난 경쟁력을 갖춘다. 머신러닝 기반 자연어 처리 기술이 발전함에 따라 다양한 텍스트 분석 기법이 속속 등장하고 있다. 수많은 기법 중에서 어떤 방법을 언제 어떻게 사용해야 유용한 정보를 얻어낼 수 있을까?

이 책은 유엔총회 일반토의 연설문부터 트위터, 로이터 뉴스 기사 등 다양한 데이터셋을 사용하여 상황별로 가장 유용한 텍스트 분석 기법을 소개한다. 실제 모범 사례를 기반으로 상황에 맞게 설계한 텍스트 전처리 파이프라인 구축, N-그램 분석, 텍스트 벡터화 등 다양한 전략으로 텍스트 분석과 자연어 처리를 정복해보자.

텍스트마다 적절한 분석 기법은 따로 있다!
당신의 경쟁력을 완성할 텍스트 분석 전략서


텍스트에서 좋은 정보를 찾는 이가 뛰어난 경쟁력을 갖춘다. 머신러닝 기반 자연어 처리 기술이 발전함에 따라 다양한 텍스트 분석 기법이 속속 등장하고 있다. 수많은 기법 중에서 어떤 방법을 언제 어떻게 사용해야 유용한 정보를 얻어낼 수 있을까? 이 책은 유엔총회 일반토의 연설문부터 트위터, 로이터 뉴스 기사 등 다양한 데이터셋을 사용하여 상황별로 가장 유용한 텍스트 분석 기법을 소개한다. 실제 모범 사례를 기반으로 상황에 맞게 설계한 텍스트 전처리 파이프라인 구축, N-그램 분석, 텍스트 벡터화 등 다양한 전략으로 텍스트 분석과 자연어 처리를 정복해보자.

이럴 땐 이렇게!
98가지 분석 전략으로 텍스트를 정복하라


텍스트는 문맥에 크게 의존하고 있어 컴퓨터가 이해하는 데 많은 어려움이 있었다. 하지만 최근 들어 통계 기술과 머신러닝 알고리즘이 발전하며 텍스트를 분석하는 다양한 방식이 탄생했다. 그렇다면 이 많은 텍스트 분석 기법 중에서 내가 분석하려는 텍스트에 딱 맞는 방법을 찾을 수 있을까? 이 책은 저자들이 여러 비즈니스 영역에서 텍스트 분석 프로젝트를 진행한 경험을 바탕으로 텍스트에 맞는 분석 전략 98가지를 소개한다.
각 장에서는 API나 크롤링을 이용한 텍스트 수집, 정규표현식이나 인공지능을 활용한 유사 단어 탐색, 단어 사이 관계를 파악하는 지식 그래프 생성 같은 텍스트 분석의 모든 과정마다 필요한 다양한 전략을 소개한다. 이때 사용하는 데이터는 유엔총회 연설 데이터, 깃허브 이슈 모음, 커뮤니티 게시글 모음 등 실제로 마주할 수 있는 텍스트로 여러 상황이나 데이터에 적합한 맞춤형 분석 전략을 소개한다. 전략마다 넘파이(NumPy), 트랜스포머스(Transformers), 사이킷런(scikit-learn), 사이파이(SciPy), 스페이시(spaCy) 등 텍스트 분석에 필요한 라이브러리를 사용하며, 각자 가지고 있는 데이터와 요구 사항에 맞게 변경해 분석해볼 수 있도록 코드의 뼈대도 함께 제공한다. 지금 당장 새로운 정보를 알아내야 할 텍스트가 있다면 이 책에서 소개하는 적절한 전략을 찾아 텍스트를 정복하자.

대상 독자
- 갖고 있는 텍스트에 적합한 분석법을 판단하려는 개발자
- 빠르게 초기 결과를 만들어서 프로젝트의 성공 가능성을 검토하려는 기획자
- 문제를 풀기 위한 베이스라인을 빠르게 작성해야 하는 데이터 과학자

주요 내용
- API와 웹페이지에서 데이터를 추출하는 법
- 텍스트 데이터를 통계 분석과 머신러닝에 사용할 수 있도록 전처리하는 법
- 머신러닝을 활용한 분류, 주제 모델링, 요약 기법
- 단어 임베딩을 활용한 구문 유사도 시각화 방법
- 명명된 개체와 그 관계를 기반으로 한 지식 그래프 구축법


Information Provided By: : Aladin

Author Introduction

크리스티안 윙클러(지은이)

데이터 과학자이자 머신러닝 아키텍트다. 이론 물리학 박사 학위를 받고 20년 동안 대용량 데이터 및 인공지능 분야에서 일하며 대량 텍스트 처리를 위한 확장 가능한 시스템 및 지능형 알고리즘에 주력했다. 데이터나이징 유한회사를 창립하고 여러 컨퍼런스에서 강연하며 머신러닝/텍스트 분석을 주제로 다수의 글을 게재했다.

젠스 알브레히트(지은이)

뉘른베르크 공과 대학 컴퓨터공학과 전임 교수다. 주된 분야는 데이터 관리 및 분석으로, 특히 텍스트에 중점을 둔다. 컴퓨터과학 박사 학위를 받고 업계에서 컨설턴트 및 데이터 설계자로 10년 이상 일한 뒤, 2012년 학계로 돌아왔다. 빅데이터 관리 및 분석에 관한 여러 편의 글을 기고했다.

싯다르트 라마찬드란(지은이)

현재 소비재 산업용 데이터 제품을 구축하고 있는 데이터 과학자 팀의 리더다. 통신, 은행, 마케팅 산업 전반에 걸쳐 소프트웨어 엔지니어링 및 데이터 과학 분야에서 10여 년 경력을 쌓았다. 또한 테크크런치에 소개된 왓츠앱용 스마트 개인 비서 앱 기업 WACAO를 공동 설립했다. 인도 공과대학교 루르키 캠퍼스에서 공학 학사 학위를, 인도 경영대학교 코지코드 캠퍼스에서 MBA를 취득했다. 기술을 이용해 현업의 문제를 해결하는 일에 열정적이며 개인 프로젝트로 해킹을 하며 여가를 즐긴다.

심상진(옮긴이)

국내 IT 대기업에서 자연어 데이터 분석 및 모델러로 활동 중이다. 물리학을 전공하고, 임베딩 소프트웨어 개발, 단백질 분자 모델링 연구 및 시스템 파이프라인 구축, 기상/지리 데이터 관련 시각화 및 관리 소프트웨어 방면에서 경력을 쌓았다. 데이터 분석을 평생의 업으로 생각하고 일에 매진하고 있다. 자연어 처리가 주 업무이며, 데이터 수집 방법과 레이블링의 효율적 처리 방법을 강구하는 중이다. BERT보다 작으면서도 효율적인 구성을 가진 모델을 연구하며, 자연어를 기계어에 일대일로 대응시킬 방법을 모색하고 있다. 무엇보다 얼마 전에 태어난 아기에게 애정 어린 관심을 쏟으며 연구를 게을리하지 않으려고 노력한다.

Information Provided By: : Aladin

Table of Contents

CHAPTER 1 텍스트 데이터에서 찾는 통찰
1.1 학습 목표
1.2 탐색적 데이터 분석
1.3 데이터셋: 유엔총회 일반토의
1.4 전략: 팬더스로 데이터 개요 확인
1.5 전략: 간단한 텍스트 전처리 파이프라인 구축
1.6 단어 빈도 분석을 위한 전략
1.7 전략: 컨텍스트 내 키워드 탐색
1.8 전략: N-그램 분석
1.9 전략: 시간 및 범주에 따른 빈도 비교
1.10 마치며

CHAPTER 2 API로 추출하는 텍스트 속 통찰
2.1 학습 목표
2.2 API
2.3 전략: 리퀘스트 모듈을 이용한 API 호출
2.4 전략: 트위피를 사용한 트위터 데이터 추출
2.5 마치며

CHAPTER 3 웹사이트 스크래핑 및 데이터 추출
3.1 학습 목표
3.2 스크래핑 및 데이터 추출
3.3 로이터 뉴스 아카이브
3.4 URL 생성
3.5 전략: robots.txt 파일 해석
3.6 전략: sitemap.xml 파일로 URL 획득
3.7 전략: RSS에서 URL 획득
3.8 데이터 다운로드
3.9 전략: 파이썬을 사용한 HTML 페이지 다운로드
3.10 전략: wget을 사용한 HTML 페이지 다운로드
3.11 반정형 데이터 추출
3.12 전략: 정규 표현식을 사용한 데이터 추출
3.13 전략: HTML 파서를 사용한 데이터 추출
3.14 전략: 스파이더링
3.15 밀도 기반 텍스트 추출
3.16 올인원 접근 방식
3.17 전략: 스크래피를 사용한 로이터 아카이브 스크래핑
3.18 스크래핑과 관련된 문제
3.19 마치며

CHAPTER 4 통계 및 머신러닝을 위한 텍스트 데이터 준비
4.1 학습 목표
4.2 데이터 전처리 파이프라인
4.3 데이터셋: 레딧 셀프포스트
4.4 텍스트 데이터 정리
4.5 토큰화
4.6 스페이시를 사용한 언어 처리
4.7 대규모 데이터셋에서 특성 추출
4.8 더 알아보기
4.9 마치며

CHAPTER 5 특성 엔지니어링 및 구문 유사성
5.1 학습 목표
5.2 실험을 위한 토이 데이터셋
5.3 전략: 자신만의 벡터화 객체 구축
5.4 단어 가방 모델
5.5 TF-IDF 모델
5.6 ABC 데이터셋의 구문 유사성
5.7 마치며

CHAPTER 6 텍스트 분류 알고리즘
6.1 학습 목표
6.2 데이터셋: JDT 버그 보고
6.3 전략: 텍스트 분류 시스템 구축
6.4 텍스트 분류를 위한 최종 코드
6.5 전략: 교차 검증을 사용한 현실적인 정확도 메트릭 추정
6.6 전략: 그리드 검색을 통한 하이퍼파라미터 조정
6.7 텍스트 분류 시스템 요약 및 결론
6.8 마치며
6.9 더 읽어보기

CHAPTER 7 텍스트 분류기
7.1 학습 목표
7.2 전략: 예측 확률을 사용한 분류 신뢰도 결정
7.3 전략: 예측 모델의 특성 중요도 측정
7.4 전략: LIME을 사용한 분류 결과 설명
7.5 전략: ELI5를 사용한 분류 결과 설명
7.6 전략: 앵커를 사용한 분류 결과 설명
7.7 마치며

CHAPTER 8 비지도 학습: 토픽 모델링 및 클러스터링
8.1 학습 목표
8.2 데이터셋: 유엔총회 일반토의
8.3 비음수 행렬 분해(NMF)
8.4 잠재 시맨틱 분석/인덱싱
8.5 잠재 디리클레 할당(LDA)
8.6 전략: 워드 클라우드를 사용한 토픽 모델 결과 비교
8.7 전략: 단락의 토픽 분포 및 시간 변화 계산
8.8 젠심을 사용한 토픽 모델링
8.9 전략: 클러스터링을 통한 텍스트 데이터 구조 파악
8.10 추가 아이디어
8.11 요약 및 추천
8.12 마치며

CHAPTER 9 텍스트 요약
9.1 학습 목표
9.2 텍스트 요약
9.3 전략: 주제 표현을 이용한 텍스트 요약
9.4 전략: 지시자 표현을 사용한 텍스트 요약
9.5 텍스트 요약 방법의 성능 측정
9.6 전략: 머신러닝을 이용한 텍스트 요약
9.7 마치며
9.8 더 읽어보기

CHAPTER 10 단어 임베딩으로 의미 관계 탐색
10.1 학습 목표
10.2 시맨틱 임베딩 케이스
10.3 전략: 사전 훈련된 모델에 유사한 질의 사용
10.4 자체 임베딩 학습 및 평가를 위한 전략
10.5 임베딩 시각화를 위한 전략
10.6 마치며
10.7 더 읽어보기

CHAPTER 11 텍스트 데이터를 이용한 감성 분석
11.1 학습 목표
11.2 감성 분석
11.3 데이터셋: 아마존 고객 리뷰
11.4 전략: 어휘 기반 감성 분석
11.5 지도 학습 접근법
11.6 전략: 텍스트 데이터 벡터화 및 지도 학습 알고리즘 적용
11.7 딥러닝을 사용한 사전 훈련된 언어 모델
11.8 전략: 전이 학습 기법과 사전 훈련된 언어 모델 사용
11.9 마치며
11.10 더 읽어보기

CHAPTER 12 지식 그래프 구축
12.1 학습 목표
12.2 지식 그래프
12.3 데이터셋: 로이터-21578
12.4 개체명 인식
12.5 상호 참조 해결
12.6 전략: 동시 발생 그래프 생성
12.7 관계 추출
12.8 지식 그래프 생성
12.9 마치며
12.10 더 읽어보기

CHAPTER 13 프로덕션에서 텍스트 분석
13.1 학습 목표
13.2 전략: 콘다를 사용한 파이썬 환경 구성
13.3 전략: 컨테이너를 사용한 재현 가능 환경 구성
13.4 전략: 텍스트 분석 모델을 위한 REST API 생성
13.5 전략: 클라우드 공급자를 사용한 API 배포 및 확장
13.6 전략: 빌드 버전의 관리 및 배포 자동화
13.7 마치며
13.8 더 읽어보기

New Arrivals Books in Related Fields

Kneusel, Ronald T (2022)
Kneusel, Ronald T (2022)
한국교육학술정보원 (2022)