HOME > 상세정보

상세정보

비즈니스 데이터 과학 : 비즈니스 의사결정을 위한 통계학, 경제학, 인공지능의 만남

자료유형
단행본
개인저자
Taddy, Matt 이준용, 역
서명 / 저자사항
비즈니스 데이터 과학 : 비즈니스 의사결정을 위한 통계학, 경제학, 인공지능의 만남 / 맷 태디 지음 ; 이준용 옮김
발행사항
서울 :   한빛미디어,   2022  
형태사항
419 p. : 삽화(일부천연색), 도표 ; 24 cm
원표제
Business data science : combining machine learning and economics to optimize, automate, and accelerate business decisions
ISBN
9791162245729
서지주기
참고문헌(p. 397-410)과 색인수록
일반주제명
Decision making --Econometric models Machine learning
000 00000cam c2200205 c 4500
001 000046126412
005 20220902103321
007 ta
008 220901s2022 ulkad b 001c kor
020 ▼a 9791162245729 ▼g 93000
035 ▼a (KERIS)BIB000016311247
040 ▼a 211021 ▼c 211021 ▼d 211009
041 1 ▼a kor ▼h eng
082 0 0 ▼a 658.4/033 ▼2 23
085 ▼a 658.4033 ▼2 DDCK
090 ▼a 658.4033 ▼b 2022z1
100 1 ▼a Taddy, Matt
245 1 0 ▼a 비즈니스 데이터 과학 : ▼b 비즈니스 의사결정을 위한 통계학, 경제학, 인공지능의 만남 / ▼d 맷 태디 지음 ; ▼e 이준용 옮김
246 1 9 ▼a Business data science : ▼b combining machine learning and economics to optimize, automate, and accelerate business decisions
260 ▼a 서울 : ▼b 한빛미디어, ▼c 2022
300 ▼a 419 p. : ▼b 삽화(일부천연색), 도표 ; ▼c 24 cm
504 ▼a 참고문헌(p. 397-410)과 색인수록
650 0 ▼a Decision making ▼x Econometric models
650 0 ▼a Machine learning
700 1 ▼a 이준용, ▼e
900 1 0 ▼a 태디, 맷, ▼e
945 ▼a ITMT

소장정보

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 중앙도서관/제3자료실(4층)/ 청구기호 658.4033 2022z1 등록번호 111868659 도서상태 대출가능 반납예정일 예약 서비스 B M

컨텐츠정보

책소개

비즈니스 분야에서 자주 언급되는 문제와 관련된 통계학, 경제학 개념 및 빅데이터 기술을 소개한다. 이 책에는 아마존과 마이크로소프트에서 데이터 과학팀을 이끌고 시카고 대학교에서 계량경제학 및 통계학 교수로 재직하면서 데이터 과학 커리큘럼을 개발한 저자의 경험이 고스란히 담겨있다.

통계학, 경제학 개념부터 머신러닝 알고리즘까지 실무자가 알아야 하는 필수적인 내용들을 친절하게 설명하며 이를 R 프로그래밍 언어로 직접 구현하면서 모델링 기법의 목적과 사용법을 더 자세히 이해할 수 있게 돕는다. 데이터 과학자, 데이터 엔지니어, 인공지능 개발자, 비즈니스 의사결정자 그리고 고급 통계학 지식을 얻고자 하는 사람에게 유용한 책이다.

더 나은 의사결정을 위한 필수 통계학, 경제학 개념부터 핵심 머신러닝 알고리즘까지
실무자를 위한 비즈니스 빅데이터 기술

비즈니스 분야에서 자주 언급되는 문제와 관련된 통계학, 경제학 개념 및 빅데이터 기술을 소개합니다. 이 책에는 아마존과 마이크로소프트에서 데이터 과학팀을 이끌고 시카고 대학교에서 계량경제학 및 통계학 교수로 재직하면서 데이터 과학 커리큘럼을 개발한 저자의 경험이 고스란히 담겨있습니다. 통계학, 경제학 개념부터 머신러닝 알고리즘까지 실무자가 알아야 하는 필수적인 내용들을 친절하게 설명하며 이를 R 프로그래밍 언어로 직접 구현하면서 모델링 기법의 목적과 사용법을 더 자세히 이해할 수 있게 돕습니다. 데이터 과학자, 데이터 엔지니어, 인공지능 개발자, 비즈니스 의사결정자 그리고 고급 통계학 지식을 얻고자 하는 사람에게 유용한 책입니다.

아마존 수석 이코노미스트(부사장)의 노하우와 사례로 가득한 실무 중심의 비즈니스 데이터 과학

오늘날에는 머신러닝과 통계학, 데이터 기반의 사회과학 및 경제학과 같은 분야에서 끊임없는 지적 융합이 일어나고 있으며, 이러한 융합은 데이터 분석의 질을 높여줍니다.이 책은 최선의 데이터 분석 방법을 설명하기 위해 머신러닝과 통계학 그리고 경제학을 융합합니다. 머신러닝과 통계학으로 자동화 및 확장 방법을 배우고, 경제학에서 인과관계 및 구조 모델링을 위한 도구를 가져오며, 이러한 방법들이 비즈니스 의사결정과 어떤 관련이 있는지 설명합니다. '무슨' 일이 일어났는지가 아니라 '왜' 이런 일이 발생했는지에 초점을 맞추어 설명하기 때문에 다양한 모델의 핵심 개념을 쉽게 이해할 수 있습니다. 저자가 학생들을 가르치며 얻은 노하우와 이베이, 마이크로소프트, 아마존에서 경험한 사례를 여러분의 실무에 적용해보세요!

주요 내용
● 비즈니스 의사결정에 필요한 통계학, 경제학 이론과 머신러닝 알고리즘
● 텍스트 분석, 가격 결정 및 수요 추정, A/B 실험, 고객 행동 분석의 사례
● 머신러닝 도구를 사용하여 비즈니스 의사결정을 내리는 방법
● 인공지능으로 비즈니스 문제를 해결하는 방법


정보제공 : Aladin

저자소개

맷 태디(지은이)

아마존 부사장. 2008년부터 2018년까지 시카고 대학교 부스 경영대학원에서 계량경제학 및 통계학 교수로 재직하면서 데이터 과학 커리큘럼을 개발했습니다. 마이크로소프트의 수석 연구원(Head of Economics and Data Science, Business AI)과 이베이의 연구원(Research Fellow)을 포함하여 다양한 산업 분야에서 일한 경험이 있습니다.

이준용(옮긴이)

인공지능과 빅데이터 기술에 관심이 많은 연구원. 한국과학기술원(KAIST)에서 전자공학 박사학위를 받고, 일본 ATR IRC 연구소에서 인간-로봇 상호작용에 대해 연구했으며, 미국 아이오와 주립대학교에서 대사회로 관련 데이터베이스를 구축했습니다다. 2014년부터 2021년까지 미국 퍼시픽 노스웨스트 국립연구소에서 다양한 생명과학 연구에 참여했습니다다. 현재는 한 바이오텍 기업에서 수석 데이터 과학자로 암 진단과 관련된 일을 하고 있습니다다. 역서로 『손에 잡히는 R 프로그래밍』(한빛미디어, 2015), 『파이썬과 대스크를 활용한 고성능 데이터 분석』(한빛미디어, 2020), 『데이터 과학을 위한 통계(2판)』(한빛미디어, 2021)가 있습니다.

정보제공 : Aladin

목차

CHAPTER 0 들어가며
두 도표에 대한 이야기
빅데이터와 머신러닝
계산

CHAPTER 1 불확실성
1.1 빈도주의 관점에서의 불확실성과 부트스트랩
_알고리즘 1 | 비모수 부트스트랩
_심화학습 | 편향된 추정량과 부트스트랩 사용
_알고리즘 2 | 신뢰구간을 위한 비모수 부트스트랩
1.2 가설 검정과 거짓 발견 비율 조절
_알고리즘 3 | BH FDR 제어
_심화학습 | BH 알고리즘이 작동하는 이유
1.3 베이지안 추론

CHAPTER 2 회귀
2.1 선형 모델
2.2 로지스틱 회귀
2.3 편차와 가능도
2.4 회귀 불확실성
2.5 공간과 시간

CHAPTER 3 정규화
3.1 표본 외 성능
_알고리즘 4 | K-폴드 표본 외 검증
3.2 정규화 경로
_알고리즘 5 | 전진 단계별 회귀
_알고리즘 6 | lasso 정규화 경로
3.3 모델 선택
_알고리즘 7 | K-폴드 CV
_알고리즘 8 | K-폴드 CV lasso
3.4 lasso에 대한 불확실성 정량화
_알고리즘 9 | lasso 신뢰구간을 위한 모수적 부트스트랩
_알고리즘 10 | √n 학습에서 서브샘플링 CI

CHAPTER 4 분류
4.1 최근접 이웃
_알고리즘 11 | K 최근접 이웃
4.2 확률, 비용, 분류
_알고리즘 12 | 맵리듀스 프레임워크
4.3 다항 로지스틱 회귀
4.4 분산 다항 회귀
4.5 분산과 빅데이터

CHAPTER 5 실험
5.1 무작위 대조 시험
5.2 유사 실험 설계
5.3 도구 변수
_알고리즘 13 | 2SLS

CHAPTER 6 제어
6.1 조건부 무시가능성과 선형 처리 효과
6.2 고차원 교란 조정
_알고리즘 14 | LTE lasso 회귀
6.3 표본 분할과 직교 머신러닝
_알고리즘 15 | LTE를 위한 직교 머신러닝
6.4 이종 처리 효과
6.5 합성 제어
_알고리즘 15 | 합성 제어

CHAPTER 7 인수분해
7.1 클러스터링
_알고리즘 17 | K-평균
7.2 요인 모델과 PCA
_알고리즘 18 | 주성분 분석
7.3 주성분 회귀
_알고리즘 19 | 주성분 (lasso) 회귀
7.4 부분 최소제곱법
_알고리즘 20 | 주변 회귀
_알고리즘 21 | 부분 최소제곱법(PLS)

CHAPTER 8 데이터로서의 테스트
8.1 토큰화
8.2 텍스트 회귀
8.3 토픽 모델
_알고리즘 22 | 희소 데이터를 위한 PCA
8.4 다항 역회귀
8.5 협업 필터링
8.6 워드 임베딩

CHAPTER 9 비모수
9.1 의사결정트리
_알고리즘 23 | CART 알고리즘
9.2 랜덤 포레스트
_알고리즘 24 | 랜덤 포레스트(RF)
_알고리즘 25 | 경험적 베이지안 포레스트(EBF)
9.3 인과 트리
_알고리즘 26 | 인과 트리(CT)
9.4 반모수와 가우스 프로세스

CHAPTER 10 인공지능
10.1 인공지능이란 무엇인가?
10.2 범용 머신러닝
10.3 딥러닝
10.4 확률적 경사하강법
10.5 강화 학습
10.6 상황에 따른 인공지능

관련분야 신착자료