000 | 00000nam c2200205 c 4500 | |
001 | 000046120369 | |
005 | 20220713140211 | |
007 | ta | |
008 | 211227s2022 ulkad bmAC 000c eng | |
040 | ▼a 211009 ▼c 211009 ▼d 211009 | |
041 | 0 | ▼a eng ▼b kor |
085 | 0 | ▼a 0510 ▼2 KDCP |
090 | ▼a 0510 ▼b 6D5 ▼c 1216 | |
100 | 1 | ▼a 류두현, ▼g 柳斗鉉 |
245 | 1 0 | ▼a Improved performance and stability of tin-based perovskite photovoltaic via bromine incorporation / ▼d Du Hyeon Ryu |
246 | 1 1 | ▼a 브롬 도입을 통한 주석 기반 페로브스카이트 소자 성능 및 안정성 향상 |
260 | ▼a Seoul : ▼b Graduate School, Korea University, ▼c 2022 | |
300 | ▼a vi, 65장 : ▼b 삽화, 도표 ; ▼c 26 cm | |
500 | ▼a 지도교수: 임상혁, 송창은 | |
502 | 0 | ▼a 학위논문(석사)-- ▼b 고려대학교 대학원: ▼c 화공생명공학과, ▼d 2022. 2 |
504 | ▼a 참고문헌: 장 55-64 | |
530 | ▼a PDF 파일로도 이용가능; ▼c Requires PDF file reader(application/pdf) | |
653 | ▼a oxidation control ▼a morphology control ▼a bromide ▼a tin halide perovskite solar cell | |
776 | 0 | ▼t Improved Performance and Stability of Tin-based Perovskite Photovoltaic via Bromine Incorporation ▼w (DCOLL211009)000000257777 |
900 | 1 0 | ▼a Ryu, Du Hyeon, ▼e 저 |
900 | 1 0 | ▼a 임상혁, ▼g 任相赫, ▼e 지도교수 |
900 | 1 0 | ▼a Im, Sang Hyuk, ▼e 지도교수 |
900 | 1 0 | ▼a 송창은, ▼e 지도교수 |
900 | 1 0 | ▼a Song, Chang Eun, ▼e 지도교수 |
945 | ▼a ITMT |
전자정보
소장정보
No. | 소장처 | 청구기호 | 등록번호 | 도서상태 | 반납예정일 | 예약 | 서비스 |
---|---|---|---|---|---|---|---|
No. 1 | 소장처 과학도서관/학위논문서고/ | 청구기호 0510 6D5 1216 | 등록번호 123068578 | 도서상태 정리중 | 반납예정일 | 예약 예약가능 | 서비스 |
No. 2 | 소장처 과학도서관/학위논문서고/ | 청구기호 0510 6D5 1216 | 등록번호 123068579 | 도서상태 정리중 | 반납예정일 | 예약 | 서비스 |
컨텐츠정보
초록
The tin halide perovskite solar cells (THPSCs) have attracted in photovoltaic field, which is a promising candiate to address the concerns about potential lead toxicity and theoretical efficiency limit of lead halide perovskite photovoltaics. Nevertheless, THPSCs suffer from the severe oxidation from Sn2+ to Sn4+ and fast crystallization, leading to the low performance of devices. In this work, we incorporate the bromide in composition engineering, which occured 2D/3D hybrid cations tin halide perovskite films with high oriented crystallization and surppressed oxidation. Furthermore, we investigate the computational quantum mechanical modelling method to find the clue of the high stability against the oxygen and how to incorporating the bromide can lowering the trap density. We succeed in improving the crystallinity of 2D/3D hybrid perovskite by highly oriented surface to bulk direction. This leads to decrease of traps and charge recommbination losses in the device. Consequently, devices using X = 0.30 bromide in the perovskite layer with composition PEA15EA15FA70SnI3-XBrX shown 8.47% of power conversion efficiency by suppressed Sn4+ oxidation state, improved vertical orientation of the perovskite and good band alignment. Moreover, maintained over 80% of original efficiency after 80min storage under light soaking with encapsulation.
목차
Contents Abstract ............................................................................... Ⅰ Abstract (in Korean; 국문요약) ..................................... Ⅱ List of Figure ..................................................................... Ⅲ List of Tables ..................................................................... Ⅵ 1. Introduction ................................................................................ 1 1.1 Perovskite solar cells ............................................................ 3 1.2 Lead free perovskite solar cells ........................................... 4 1.3 Tin-based perovskite solar cells .......................................... 5 1.3.1 2D and quasi-2D tin perovskite .................................. 6 1.3.2 X site compositional engineering ................................ 7 2. Materials and Methods .............................................................. 9 2.1 Materials ................................................................................ 9 2.2 Experimental method ........................................................... 9 2.2.1 Device design .............................................................. 9 2.2.2 Device fabrication .................................................... 10 2.2.3 Characterization .................................................... 11 2.2.4 Computational Methods ....................................... 13 3. Results and discussion ............................................................. 14 3.1 Device structure .................................................................. 14 3.2 Morphology of the perovskite films .................................. 17 3.3 Optoelectronic property of the perovskite films .............. 27 3.4 Device Performance............................................................ 39 3.5 Computational quantum mechanical modelling ........... 46 4. Conclusion ................................................................................ 54 5. Reference................................................................................... 55