HOME > Detail View

Detail View

실무자를 위한 그래프 데이터 활용법

Material type
단행본
Personal Author
Gosnell, Denise Broecheler, Matthias, 저 우정은, 역
Title Statement
실무자를 위한 그래프 데이터 활용법 / 데니즈 고즈넬, 마티아스 브뢰헬러 지음 ; 우정은 옮김
Publication, Distribution, etc
서울 :   한빛미디어,   2022  
Physical Medium
448 p. : 천연색삽화 ; 24 cm
Varied Title
The practitioner's guide to graph data
ISBN
9791162245590
General Note
그래프를 그리면 세상이 보인다, 그래프 씽킹으로 시작하는 그래프 데이터베이스 사용 안내서  
색인수록  
Subject Added Entry-Topical Term
Database management Graph databases Information visualization
000 00000cam c2200205 c 4500
001 000046119259
005 20220627141224
007 ta
008 220621s2022 ulka 001c kor
020 ▼a 9791162245590 ▼g 93000
035 ▼a (KERIS)BIB000016216574
040 ▼a 211015 ▼c 211015 ▼d 211009
041 1 ▼a kor ▼h eng
082 0 4 ▼a 005.75 ▼2 23
085 ▼a 005.75 ▼2 DDCK
090 ▼a 005.75 ▼b 2022
100 1 ▼a Gosnell, Denise
245 1 0 ▼a 실무자를 위한 그래프 데이터 활용법 / ▼d 데니즈 고즈넬, ▼e 마티아스 브뢰헬러 지음 ; ▼e 우정은 옮김
246 1 9 ▼a The practitioner's guide to graph data
246 3 9 ▼a Practitioner's guide to graph data
260 ▼a 서울 : ▼b 한빛미디어, ▼c 2022
300 ▼a 448 p. : ▼b 천연색삽화 ; ▼c 24 cm
500 ▼a 그래프를 그리면 세상이 보인다, 그래프 씽킹으로 시작하는 그래프 데이터베이스 사용 안내서
500 ▼a 색인수록
650 0 ▼a Database management
650 0 ▼a Graph databases
650 0 ▼a Information visualization
700 1 ▼a Broecheler, Matthias, ▼e
700 1 ▼a 우정은, ▼e
900 1 0 ▼a 고즈넬, 데니즈, ▼e
900 1 0 ▼a 브뢰헬러, 마티아스, ▼e
945 ▼a ITMT

Holdings Information

No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Science & Engineering Library/Sci-Info(Stacks1)/ Call Number 005.75 2022 Accession No. 121260236 Availability Available Due Date Make a Reservation Service B M

Contents information

Book Introduction

국내 최초 그래프 씽킹(graph thinking) 안내서, 문제 해결력을 키우는 그래프 씽킹 완벽 가이드. 데이터는 점점 더 방대하고 복잡해지고 있다. 넘쳐나는 데이터의 홍수 속에서 구원의 손길을 바라는 이가 있다면 바로 여기, 이 책을 펼쳐보자.

컴퓨터는 행과 열로 이루어진 정적 데이터에 의존하는 반면, 사람은 관계를 통해 삶을 탐색하고 유추한다. 그래프 데이터는 사람과 컴퓨터가 세상을 바라보는 관점의 차이를 좁힌다. 이 책에서는 새로운 사고방식인 그래프 씽킹 개념을 소개하며 그래프 데이터로 두 가지 접근 방식을 아우르는 방법을 친절히 안내한다. 이 책을 따라 하며 그래프 씽킹과 그래프 이론, 데이터베이스 스키마, 분산 시스템, 데이터 분석을 터득하고 그래프 데이터를 효율적으로 구축해 복잡한 문제를 해결하는 법을 배워보자.

이제는 그래프 데이터베이스 시대!
새로운 패러다임 그래프 씽킹을 만나다

데이터 관리 회사 ‘데이터스택스(Datastax)’에서 근무하는 CDO, CTO가 함께 집필한 그래프 데이터베이스 사용 안내서! 그들이 여러 팀에게 조언하며 얻은 지식과 노하우를 이 책에 모두 담았다. 방대하고 복잡한 데이터에서 가치를 추출하는 혜안으로 ‘그래프 씽킹’ 개념을 제시하며 여러분의 사고방식을 그래프 씽킹으로 전환할 수 있도록 친절히 안내한다. 개념 이해를 돕는 풍부한 그림과 실무에 유용한 예제를 통해 그래프 데이터베이스 시대를 마주하게 될 여러분에게 세상을 이해할 수 있는 비밀스런 열쇠를 쥐여준다. 그래프 씽킹으로 데이터를 효율적으로 구축하는 방법을 배워 한 걸음 더 성장한 데이터 엔지니어가 되어보자.

대상 독자
그래프 데이터를 효과적으로 사용하고 싶은 데이터 엔지니어, 데이터 아키텍트
그래프 씽킹을 터득하고 싶은 데이터 과학자, 데이터 분석가
그래프 씽킹이 궁금한 누구나(기초 데이터베이스 지식이 있다면 개념을 더 쉽게 이해할 수 있다)

주요 내용
관계형, 그래프 데이터베이스로 아키텍처 구축하기
유명한 그래프 데이터 패턴 Customer 360 애플리케이션 구현하기
계층형 데이터에서 그래프 데이터로 작업할 때 발생하는 문제 해결하기
경로를 찾는 다양한 방법과 경로가 선호도에 미치는 영향 살펴보기
협업 필터링으로 넷플릭스와 비슷한 영화 추천 시스템 설계하기


Information Provided By: : Aladin

Author Introduction

데니즈 고즈넬(지은이)

데이터스택스(Datastax)의 최고 데이터 책임자(CDO). 2017년 데이터스택스에 합류해 세계에서 가장 큰 분산 그래프 애플리케이션을 개발하는 Global Graph Practice 팀을 만들고 이끌었다. 미국 국립과학재단 펠로로 테네시 대학교(University of Tennessee)에서 컴퓨터 공학 박사 학위를 취득했다. 그래프 알고리즘을 활용해 소셜 미디어 상호작용 기반으로 사용자 신원을 예측하는 ‘소셜 지문(social fingerprinting)’ 개념을 만들고 연구했다. 주요 경력은 그래프 데이터 애플리케이션을 조사하고, 적용하고, 지지하는 것과 관련된다. 그래프 이론, 그래프 알고리즘, 그래프 데이터베이스와 관련한 특허를 출원하고 출판했으며, 이와 연계된 다양한 주제의 연사로도 활동한다. 데이터스택스에서 일하기 전에는 의료 산업에 근무하면서 허가형 블록체인, 그래프 분석과 데이터 과학에 적용하는 머신러닝 등의 소프트웨어 솔루션을 개발했다.

마티아스 브뢰헬러(지은이)

데이터스택스의 최고 기술 책임자(CTO)이며 수많은 연구 개발 경험을 보유한 기업가다. 혁신적인 소프트웨어 기술과 복잡한 시스템 이해를 집중적으로 연구한다. 그래프 데이터베이스, 관계형 머신러닝, 일반적인 빅데이터 분석 분야의 전문가로 유명하다. 린 방법론과 꾸준한 실험을 통해 지속적인 향상을 추구한다. 타이탄(Titan) 그래프 데이터베이스를 만들었고 아우렐리우스(Aurelius)를 설립했다.

우정은(옮긴이)

인하대학교 컴퓨터공학과를 졸업하고 LG전자, 썬 마이크로시스템즈, 오라클 등에서 모바일 제품 관련 개발을 하다가 현재는 뉴질랜드 웰링턴에 있는 Xero에서 모바일 앱 개발자로 새로운 인생을 즐기고 있다. 2010년 아이폰의 매력에 빠져들면서 번역과 개발을 취미로 삼고 꾸준히 서적을 번역한다. 옮긴 책으로는 『무던한 개발자를 위한 모던한 자바스크립트』, 『디노 첫걸음』, 『플러터 인 액션』, 『처음 배우는 스위프트』, 『실전 자바 소프트웨어 개발』, 『모던 자바 인 액션』(이상 한빛미디어) 등이 있다.

Information Provided By: : Aladin

Table of Contents

CHAPTER 1 그래프 씽킹
1.1 떠오르는 그래프 기술
1.2 그래프 씽킹이란
1.3 복잡한 문제를 해결하는 기술 선택하기
1.4 그래프 씽킹 여정 시작하기

CHAPTER 2 관계형에서 그래프 씽킹으로
2.1 2장 미리 보기: 관계형 개념을 그래프 용어로 변환하기
2.2 관계형과 그래프의 차이
2.3 관계형 데이터 모델링
2.4 그래프 데이터의 개념
2.5 그래프 스키마 언어
2.6 관계형 vs 그래프: 결정 고려 사항
2.7 마치며

CHAPTER 3 간단한 Customer 360
3.1 3장 미리 보기: 관계형 vs 그래프
3.2 그래프 데이터 기본 사용 사례: Customer 360(C360)
3.3 관계형 시스템으로 C360 애플리케이션 구현하기
3.4 그래프 시스템으로 C360 애플리케이션 구현하기
3.5 관계형 vs 그래프: 선택의 기로에 서 있다면
3.6 마치며

CHAPTER 4 이웃 탐색 개발
4.1 4장 미리 보기: 더 현실적인 C360 만들기
4.2 그래프 데이터 모델링 101
4.3 이웃 탐색 개발 세부 구현
4.4 기본적인 그렘린 탐색
4.5 고급 그렘린: 질의 결과 다듬기
4.6 개발 단계에서 제품 단계로 이동하기

CHAPTER 5 이웃 탐색 제품화
5.1 5장 미리 보기: 아파치 카산드라의 분산 그래프 데이터 이해하기
5.2 아파치 카산드라에서 그래프 데이터 사용하기
5.3 그래프 데이터 모델링 201
5.4 최종 제품 구현
5.5 더 복잡한, 분산 그래프 문제

CHAPTER 6 트리 사용 개발
6.1 6장 미리 보기: 트리 탐색, 계층 데이터, 순환
6.2 세 가지 예제로 살펴보는 계층, 중첩 데이터
6.3 용어의 숲에서 길 찾기
6.4 센서 데이터로 계층 구조 이해하기
6.5 개발 모드: 리프에서 루트로 질의하기
6.6 개발 모드: 루트에서 리프로 질의하기
6.7 시간 정보 확인

CHAPTER 7 트리 사용 제품화
7.1 7장 미리 보기: 분기 계수, 깊이, 간선의 시간 이해
7.2 센서 데이터의 시간 이해
7.3 분기 계수 이해
7.4 센서 데이터 제품 스키마
7.5 제품 모드: 리프에서 루트로 질의하기
7.6 제품 모드: 루트에서 리프로 질의하기
7.7 타워 장애 시나리오에 질의 적용하기
7.8 나무를 위해 숲 보기

CHAPTER 8 경로 찾기 개발
8.1 8장 미리 보기: 네트워크의 신뢰 수량화하기
8.2 세 가지 예제로 살펴보는 신뢰
8.3 경로 기초 개념
8.4 신뢰 네트워크에서 경로 찾기
8.5 비트코인 신뢰 네트워크로 탐색 이해하기
8.6 최단 경로 질의

CHAPTER 9 경로 찾기 제품화
9.1 9장 미리 보기: 가중치, 거리, 가지치기 이해하기
9.2 가중치 경로와 검색 알고리즘
9.3 최단 경로 문제에 알맞게 간선 가중치 정규화하기
9.4 최단 가중치 경로 질의
9.5 제품의 가중치 경로와 신뢰

CHAPTER 10 추천 개발
10.1 10장 미리 보기: 영화 추천 협업 필터링
10.2 추천 시스템 예
10.3 협업 필터링 소개
10.4 영화 데이터: 스키마, 로딩, 질의 검토
10.5 그렘린의 항목 기반 협업 필터링

CHAPTER 11 그래프의 간단한 개체 해석
11.1 11장 미리 보기: 여러 데이터셋을 하나의 그래프로 병합하기
11.2 다른 복잡한 문제 정의: 개체 해석
11.3 두 영화 데이터셋 분석하기
11.4 영화 데이터 매칭, 병합
11.5 거짓 긍정 해결

CHAPTER 12 추천 제품화
12.1 12장 미리 보기: 지름길 간선, 사전 계산, 고급 가지치기 기술 이해하기
12.2 실시간 추천용 지름길 간선
12.3 영화 데이터의 지름길 간선 계산하기
12.4 영화 추천 제품 스키마와 데이터 로딩
12.5 지름길 간선을 이용한 추천 질의

CHAPTER 13 마치며
13.1 이제 어디로 가야 할까
13.2 연락 주고받기

New Arrivals Books in Related Fields

クジラ飛行机 (2022)