HOME > 상세정보

상세정보

Multilevel modeling using R / 2nd ed

Multilevel modeling using R / 2nd ed (2회 대출)

자료유형
단행본
개인저자
Finch, W. Holmes (William Holmes), author. Bolin, Jocelyn E., author. Kelley, Ken, (Professor of information technology), author.
서명 / 저자사항
Multilevel modeling using R / W. Holmes Finch, Jocelyn E. Bolin, Ken Kelley.
판사항
2nd ed.
발행사항
Boca Raton :   Chapman & Hall/CRC,   2019.  
형태사항
ix, 242 p. : ill. ; 24 cm.
ISBN
9781138480711 1138480711 9781138480674 1138480673
서지주기
Includes bibliographical references and index.
일반주제명
Social sciences --Statistical methods. Multivariate analysis. R (Computer program language).
000 00000cam u22002058a 4500
001 000046109065
005 20220310161833
008 220302s2019 flua b 001 0 eng d
015 ▼a GBB9A3265 ▼2 bnb
020 ▼a 9781138480711 ▼q (hbk.)
020 ▼a 1138480711 ▼q (hbk.)
020 ▼a 9781138480674 ▼q (pbk.)
020 ▼a 1138480673 ▼q (pbk.)
035 ▼a (KERIS)REF000019065489
040 ▼a UKMGB ▼b eng ▼e rda ▼c UKMGB ▼d OCLCO ▼d OCLCF ▼d 211009
082 0 4 ▼a 005.55 ▼2 23
084 ▼a 005.55 ▼2 DDCK
090 ▼a 005.55 ▼b F492m2
100 1 ▼a Finch, W. Holmes ▼q (William Holmes), ▼e author.
245 1 0 ▼a Multilevel modeling using R / ▼c W. Holmes Finch, Jocelyn E. Bolin, Ken Kelley.
250 ▼a 2nd ed.
260 ▼a Boca Raton : ▼b Chapman & Hall/CRC, ▼c 2019.
264 1 ▼a Boca Raton : ▼b Chapman & Hall/CRC, ▼c 2019.
300 ▼a ix, 242 p. : ▼b ill. ; ▼c 24 cm.
336 ▼a text ▼2 rdacontent
337 ▼a unmediated ▼2 rdamedia
338 ▼a volume ▼2 rdacarrier
504 ▼a Includes bibliographical references and index.
650 0 ▼a Social sciences ▼x Statistical methods.
650 0 ▼a Multivariate analysis.
650 0 ▼a R (Computer program language).
700 1 ▼a Bolin, Jocelyn E., ▼e author.
700 1 ▼a Kelley, Ken, ▼c (Professor of information technology), ▼e author.
945 ▼a ITMT

소장정보

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 중앙도서관/서고6층/ 청구기호 005.55 F492m2 등록번호 111859900 도서상태 대출가능 반납예정일 예약 서비스 B M

컨텐츠정보

목차

1: Linear Models


Simple Linear Regression


Estimating Regression Models with Ordinary Least Squares


Distributional Assumptions Underlying Regression


Coefficient of Determination


Inference for Regression Parameters


Multiple Regression


Example of Simple Linear Regression by Hand


Regression in R


Interaction Terms in Regression


Categorical Independent Variables


Checking Regression Assumptions with R


Summary





2: An Introduction to Multilevel Data Structure


Nested Data and Cluster Sampling Designs


Intraclass Correlation


Pitfalls of Ignoring Multilevel Data Structure


Multilevel Linear Models


Random Intercept


Random Slopes


Centering


Basics of Parameter Estimation with MLMs


Maximum Likelihood Estimation


Restricted Maximum Likelihood Estimation


Assumptions Underlying MLMs


Overview of 2 level MLMs


Overview of 3 level MLMs


Overview of longitudinal designs and their relationships to MLMs


Summary





3: Fitting 2-level Models


Simple (Intercept only) Multilevel Models


Interactions and Cross Level Interactions using R


Random Coefficients Models using R


Centering Predictors


Additional Options


Parameter Estimation Method


Estimation Controls


Comparing Model fit


Lme4 and hypothesis testing


Summary





4: 3 Level and Higher Models


Defining simple 3-level Models using the lme4 package


Defining simple models with more than three levels in the lme4 package Random Coefficients models with Three or More Levels in the lme4


Package


Summary





5: Longitudinal Data Analysis using Multilevel Models


The Multilevel Longitudinal Framework


Person Period Data Structure


Fitting Longitudinal Models using the lme4 package


Changing the Covariance Structure of Longitudinal Models


Benefits of Multilevel Modeling for Longitudinal Analysis


Summary





6: Graphing Data in Multilevel Contexts


Plots for Linear Models


Plotting Nested Data


Using the Lattice Package


Plotting Model Results using the Effects Package


Summary





7: Brief Introduction to Generalized Linear Models


Logistic Regression Model for a Dichotomous Outcome Variable


Logistic Regression Model for an Ordinal Outcome Variable


Multinomial Logistic Regression


Models for Count Data


Poisson Regression


Models for Overdispersed Count data


Summary





8: Multilevel Generalized Linear Models (MGLM)


MGLMs for a Dichotomous Outcome Variable


Random Intercept Logistic Regression


Random Coefficient Logistic Regression


Inclusion of Additional level 1 and level 2 effects in MGLM


MLGM for an Ordinal Outcome Variable


Random Intercept Logistic Regression


MGLM for Count Data


Random Intercept Poisson Regression


Random Coefficient Poisson Regression


Inclusion of additional level-2 effects to the multilevel Poisson regression


model


Summary





9: Bayesian Multilevel Modeling


MCMCglmm For a Normally Distributed Response Variable


Including level-2 Predictors with MCMCglmm


User Defined Priors


MCMCglmm For a Dichotomous Dependent Variable


MCMCglmm for a Count Dependent Variable


Summary





10: Advanced Issues in Multilevel Modeling


Robust statistics in the multilevel context


Identifying potential outliers in single level data


Identifying potential outliers in multilevel data


Identifying potential multilevel outliers using R


Robust and Rank Based Estimation for multilevel models


Fitting Robust and Rank Based Multilevel Models in R


Multilevel Lasso


Fitting the Multilevel Lasso in R


Multivariate Multilevel Models


Multilevel Generalized Additive Models


Fitting GAMM using R


Predicting Level-2 Outcomes with Level-1 Variables


Power Analysis for Multilevel Models


Summary





Appendix: An Introduction to R


Running Statistical Analyses in R


Reading Data into R


Missing Data


Types of Data


Additional R Environment Options

관련분야 신착자료

Burns, Brendan (2023)
김성기 (2023)