HOME > Detail View

Detail View

(데이터 과학 기반의) 파이썬 빅데이터 분석 (Loan 2 times)

Material type
단행본
Personal Author
이지영
Title Statement
(데이터 과학 기반의) 파이썬 빅데이터 분석 / 이지영 지음
Publication, Distribution, etc
서울 :   한빛아카데미,   2020  
Physical Medium
440 p. : 삽화, 도표 ; 24 cm
Series Statement
IT@cookbook
ISBN
9791156645078
General Note
부록: 1. 아나콘다 주피터 노트북 설치 및 사용하기, 2. 개발자 모드 사용하기, 3. KoNLPy 라이브러리 설치하기  
Bibliography, Etc. Note
참고문헌(p. 437)과 색인수록
000 00000nam c2200205 c 4500
001 000046065744
005 20210127094108
007 ta
008 210126s2020 ulkad b 001c kor
020 ▼a 9791156645078 ▼g 93000
040 ▼a 211009 ▼c 211009 ▼d 211009
082 0 4 ▼a 006.312 ▼2 23
085 ▼a 006.312 ▼2 DDCK
090 ▼a 006.312 ▼b 2020z13
100 1 ▼a 이지영
245 2 0 ▼a (데이터 과학 기반의) 파이썬 빅데이터 분석 / ▼d 이지영 지음
260 ▼a 서울 : ▼b 한빛아카데미, ▼c 2020
300 ▼a 440 p. : ▼b 삽화, 도표 ; ▼c 24 cm
490 1 0 ▼a IT@cookbook
500 ▼a 부록: 1. 아나콘다 주피터 노트북 설치 및 사용하기, 2. 개발자 모드 사용하기, 3. KoNLPy 라이브러리 설치하기
504 ▼a 참고문헌(p. 437)과 색인수록
830 0 ▼a IT@cookbook
945 ▼a KLPA

Holdings Information

No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Science & Engineering Library/Sci-Info(Stacks1)/ Call Number 006.312 2020z13 Accession No. 121256274 Availability In loan Due Date 2021-08-21 Make a Reservation Available for Reserve R Service M

Contents information

Book Introduction

데이터 과학의 개념, 파이썬 기초, 데이터 크롤링 방법을 익힌 후 14개의 프로젝트를 데이터 과학 방법론에 따라 실습하는 책이다. 통계 분석, 텍스트 빈도 분석, 지리 정보 분석부터 머신러닝 기반의 회귀 분석, 분류 분석, 군집 분석, 텍스트 마이닝 등의 핵심 분석 방법과 시각화 기법도 함께 익힐 수 있다.

* 본 도서는 대학 강의용 교재로 개발되었으므로 연습문제 해답은 제공하지 않습니다.

■ 데이터 과학과 빅데이터 분석의 개념을 이해하고 빅데이터 분석에 필요한 핵심 파이썬 문법을 배울 수 있습니다.
4차 산업혁명, 데이터 과학, 빅데이터의 관계를 이해하고 빅데이터 분석에 적용할 데이터 과학 방법론을 배웁니다. 빅데이터 분석에 필요한 핵심 파이썬 문법을 살펴보고 빅데이터 수집 방법으로 유용한 파이썬 크롤링 방법도 실습과 함께 살펴봅니다.

■ 기본 분석부터 머신러닝 기반의 프로젝트까지 14개 핵심 분석 방법을 실습으로 배울 수 있습니다.
데이터 과학 방법론과 빅데이터에 대한 이해를 바탕으로 통계 분석, 텍스트 빈도 분석, 지리 정보 분석과 같은 기본적인 분석 프로젝트를 실습으로 배울 수 있습니다. 그리고 머신러닝의 지도 학습 방식인 회귀, 로지스틱 회귀, 결정 트리를 사용하는 분류 분석과 비지도 학습의 K-평균 군집화를 프로젝트로 다루고 텍스트 마이닝 프로젝트로 실습을 마무리합니다.

도서 특징

데이터 과학 방법론으로 배우는 파이썬 빅데이터 분석 프로젝트

데이터 과학의 개념, 파이썬 기초, 데이터 크롤링 방법을 익힌 후 14개의 프로젝트를 '연구 목표 설정→데이터 수집→데이터 준비→데이터 탐색→데이터 모델링→결과 시각화' 순의 데이터 과학 방법론에 따라 실습하는 책입니다. 통계 분석, 텍스트 빈도 분석, 지리 정보 분석부터 머신러닝 기반의 회귀 분석, 분류 분석, 군집 분석, 텍스트 마이닝 등의 핵심 분석 방법과 시각화 기법도 함께 익힐 수 있습니다.


Information Provided By: : Aladin

Author Introduction

이지영(지은이)

현재 서경대학교 소프트웨어학과 조교수로 재직 중입니다. 빅데이터&AI 프로젝트 컨설턴트와 프로젝트관리기술사로 활동하고 있으며 인공지능교육원에서 교육 콘텐츠를 개발하고 있습니다. 대표 저서로는 『자바로 배우는 쉬운 자료구조』(2009년 우수학술도서 선정), 『데이터 과학 기반의 파이썬 빅데이터 분석』 등이 있습니다. 주요 연구 분야는 소프트웨어 공학, 머신러닝/딥러닝 알고리즘, 딥러닝 기반 자연어 처리이며 자료구조, 빅데이터 마이닝, 데이터 크롤링 및 분석 등을 강의하고 있습니다.

Information Provided By: : Aladin

Table of Contents

PART 01 빅데이터 분석 - 이해
Chapter 01 4차 산업혁명과 데이터 과학
01 4차 산업혁명의 이해
02 4차 산업혁명을 실현하는 데이터 과학
03 4차 산업혁명 서비스 사례
요약/연습문제

Chapter 02 빅데이터의 이해와 활용
01 빅데이터의 이해
02 빅데이터의 활용
요약/연습문제

Chapter 03 데이터 과학 기반의 빅데이터 분석
01 빅데이터 산업의 이해
02 빅데이터 분석 방법과 접근법
03 빅데이터 분석을 위한 데이터 과학 방법론
요약/연습문제

PART 02 빅데이터 분석 - 준비
Chapter 04 파이썬 프로그래밍 기초
01 파이썬 시작하기
02 변수와 객체
03 자료형과 연산자
04 조건문과 반복문
05 함수
06 파일 처리
07 데이터 분석을 위한 주요 라이브러리
요약/연습문제

Chapter 05 파이썬 크롤링 - API 이용
01 네이버 API를 이용한 크롤링
02 공공데이터 API 기반 크롤링
요약/연습문제

Chapter 06 파이썬 크롤링 - 라이브러리 이용
01 정적 웹 페이지 크롤링
02 동적 웹 페이지 크롤링
요약/연습문제

PART 03 빅데이터 분석 - 기본 프로젝트
Chapter 07 통계 분석
01 [기술 통계 분석 + 그래프] 와인 품질 등급 예측하기
02 [상관 분석 + 히트맵] 타이타닉호 생존율 분석하기

Chapter 08 텍스트 빈도 분석
01 [영문 분석 + 워드클라우드] 영문 문서 제목의 키워드 분석하기
02 [한글 분석 + 워드클라우드] 한글 뉴스 기사의 키워드 분석하기

Chapter 09 지리 정보 분석
01 [주소 데이터 분석 + 지오맵] 지리 정보 분석 후 맵 생성하기
02 [행정구역별 데이터 분석 + 블록맵] 행정구역별 의료기관 현황 분석하기

PART 04 빅데이터 분석 - 머신러닝 프로젝트
Chapter 10 회귀 분석
01 [선형 회귀 분석 + 산점도/선형 회귀 그래프] 환경에 따른 주택 가격 예측하기
02 [회귀 분석 + 산점도/선형 회귀 그래프] 항목에 따른 자동차 연비 예측하기

Chapter 11 분류 분석
01 [로지스틱 회귀 분석] 특징 데이터로 유방암 진단하기
02 [결정 트리 분석 + 산점도/선형 회귀 그래프] 센서 데이터로 움직임 분류하기

Chapter 12 군집 분석
01 [K-평균 군집화 분석 + 그래프] 타깃 마케팅을 위한 소비자 군집 분석하기

Chapter 13 텍스트 마이닝
01 [감성 분석 + 토픽 모델링] 영화 리뷰 데이터로 감성 예측하기
02 [감성 분석 + 바 차트] 코로나 뉴스 텍스트의 감성 분석하기
03 [토픽 분석 + LDA 토픽 모델] 뉴스 텍스트에서 코로나 토픽 분석하기

부록
01 아나콘다 주피터 노트북 설치 및 사용하기
02 개발자 모드 사용하기
03 KoNLPy 라이브러리 설치하기

New Arrivals Books in Related Fields

Baumer, Benjamin (2021)