HOME > Detail View

Detail View

(최신 딥러닝 기술만 골라 배우는) 핵심 딥러닝 입문 : RNN, LSTM, GRU, VAE, GAN 구현 (Loan 7 times)

Material type
단행본
Personal Author
我妻幸長, 1977- 최재원, 역 장건희, 역
Title Statement
(최신 딥러닝 기술만 골라 배우는) 핵심 딥러닝 입문 : RNN, LSTM, GRU, VAE, GAN 구현 / 아즈마 유키나가 지음 ; 최재원, 장건희 옮김
Publication, Distribution, etc
안양 :   책만,   2020  
Physical Medium
375 p. : 삽화 ; 24 cm
Varied Title
はじめてのディープラーニング. 2, Pythonで実装する再帰型ニューラルネットワークとVAE, GAN
ISBN
9791189909246
General Note
부록: A. 1 간단한 구조의 RNN을 이용한 텍스트 생성, A.2 GRU를 이용한 텍스트 생성  
Bibliography, Etc. Note
참고문헌(p. 369-371)과 색인수록
000 00000cam c2200205 c 4500
001 000046062294
005 20201230154401
007 ta
008 201229s2020 ggka b 001c kor
020 ▼a 9791189909246 ▼g 93000
035 ▼a (KERIS)BIB000015716887
040 ▼a 241027 ▼c 241027 ▼d 211009
041 1 ▼a kor ▼h jpn
082 0 4 ▼a 006.31 ▼2 23
085 ▼a 006.31 ▼2 DDCK
090 ▼a 006.31 ▼b 2020z44
100 1 ▼a 我妻幸長, ▼d 1977-
245 2 0 ▼a (최신 딥러닝 기술만 골라 배우는) 핵심 딥러닝 입문 : ▼b RNN, LSTM, GRU, VAE, GAN 구현 / ▼d 아즈마 유키나가 지음 ; ▼e 최재원, ▼e 장건희 옮김
246 1 9 ▼a はじめてのディープラーニング. ▼n 2, ▼p Pythonで実装する再帰型ニューラルネットワークとVAE, GAN
246 3 ▼a Hajimete no deeplearning 2 : ▼b Paison de jissō suru saikigata nyūraru nettowāku to buiēī gan
260 ▼a 안양 : ▼b 책만, ▼c 2020
300 ▼a 375 p. : ▼b 삽화 ; ▼c 24 cm
500 ▼a 부록: A. 1 간단한 구조의 RNN을 이용한 텍스트 생성, A.2 GRU를 이용한 텍스트 생성
504 ▼a 참고문헌(p. 369-371)과 색인수록
700 1 ▼a 최재원, ▼e
700 1 ▼a 장건희, ▼e
900 1 0 ▼a 아즈마 유키나가, ▼e
900 1 0 ▼a Azuma, Yukinaga, ▼e
945 ▼a KLPA

No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Main Library/Monographs(3F)/ Call Number 006.31 2020z44 Accession No. 111841566 Availability In loan Due Date 2021-10-14 Make a Reservation Available for Reserve R Service M
No. 2 Location Science & Engineering Library/Sci-Info(Stacks1)/ Call Number 006.31 2020z44 Accession No. 121255910 Availability Available Due Date Make a Reservation Service B M
No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Main Library/Monographs(3F)/ Call Number 006.31 2020z44 Accession No. 111841566 Availability In loan Due Date 2021-10-14 Make a Reservation Available for Reserve R Service M
No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Science & Engineering Library/Sci-Info(Stacks1)/ Call Number 006.31 2020z44 Accession No. 121255910 Availability Available Due Date Make a Reservation Service B M

Contents information

Book Introduction

현 시점에서 개발자가 꼭 알아야 할 최신 딥러닝 기술들만을 골라 수식과 코드를 번갈아가며 매우 이해하기 쉽게 알려준다. 간결하고 이해하기 쉬운 예제 코드들을 하나 하나 따라 해가다 최종적으로 실전에서도 활용할 수 있는 완결된 딥러닝 코드를 완성해본다.

이 책에서는 파이썬과 기초 수학부터 시작해서, RNN(순환 신경망)과 LSTM, GRU, VAE(변이형 오토인코더), GAN(생성적 적대 신경망)까지, 최신 딥러닝의 필수 모델과 원리, 내부 동작을 빠짐없이 자세하게 설명한다. 파이썬 프로그래밍을 직접 코딩하면서 차근차근 순서대로 공부해 나가다 보면 딥러닝의 기초를 완벽하게 습득할 수 있다.

딥러닝의 기초 지식, 수학, 파이썬부터 실전 프로그래밍 구현까지,
RNN, LSTM, GRU, VAE, GAN을 망라하는 최신 딥러닝 모델 마스터!


현 시점에서 개발자가 꼭 알아야 할 최신 딥러닝 기술들만을 골라 수식과 코드를 번갈아가며 매우 이해하기 쉽게 알려준다. 간결하고 이해하기 쉬운 예제 코드들을 하나 하나 따라 해가다 최종적으로 실전에서도 활용할 수 있는 완결된 딥러닝 코드를 완성해본다. 이 책에서는 파이썬과 기초 수학부터 시작해서, RNN(순환 신경망)과 LSTM, GRU, VAE(변이형 오토인코더), GAN(생성적 적대 신경망)까지, 최신 딥러닝의 필수 모델과 원리, 내부 동작을 빠짐없이 자세하게 설명한다. 파이썬 프로그래밍을 직접 코딩하면서 차근차근 순서대로 공부해 나가다 보면 딥러닝의 기초를 완벽하게 습득할 수 있다.

| 이 책에서 다루는 내용 |
■ 실전에 응용할 수 있는 최신 딥러닝 기술 RNN, LSTM, GRU, VAE, GAN 포함
■ 딥러닝 프레임워크를 사용하지 않고 딥러닝의 알고리즘을 파이썬 프로그래밍 코드로 구현
■ 파이썬과 수치연산 라이브러리 넘파이(NumPy)를 이용한 프로그래밍 기초 지식
■ 딥러닝의 근본적인 원리를 이해하는 데 필요한 핵심 수학 이론과 수식 코딩 방법
■ 독자들이 직접 응용해 수준 높은 코드로 발전시킬 수 있는 완전한 파이썬 코드 제공

| 이 책의 독자 대상 |
■ 최신 딥러닝 기술에 대해 기초부터 차근차근 공부하고 싶은 딥러닝 입문자
■ 딥러닝 알고리즘을 수식으로 이해하고 프로그래밍 코드로 구현해보고 싶은 개발자
■ 최신 딥러닝 알고리즘 코드를 작성해 업무나 현장에서 바로 적용해보고 싶은 개발자
■ 이 모든 과정을 한 권의 책으로 해결하고 싶은 사람


Information Provided By: : Aladin

Author Introduction

아즈마 유키나가(지은이)

인간과 AI의 공생이 미션인 회사 SAI-Lab 주식회사의 대표이사로 AI 관련 교육과 연구개발에 종사하고 있다. 토호쿠대학 대학원 이학 연구과 수료. 이학 박사(물리학)이며, 관심 분야는 인공지능(AI), 복잡계, 뇌과학, 싱귤러리티 등이다. 현재 세계 최대의 교육 동영상 플랫폼 Udemy에서 다양한 AI 관련 강좌를 전개해 약 3만명을 지도하는 인기 강사이며, 엔지니어로서 VR, 게임, SNS 등 장르를 불문하고 여러 가지 앱을 개발했다.

최재원(옮긴이)

일본 게이오 대학원을 졸업하고 아주대 대학원에서 학습분석(Learning Analytics)으로 박사 학위를 취득했다. 대학 졸업 후 7년간 디지털 엔터테인먼트 업계에서 3D 영상, 게임, VR 프로듀서로 종사했고 대학원 진학 후 데이터 사이언스를 연구했다. 대학에서 통계와 데이터 사이언스 과목을 강의했으며 현재는 아주대학교 교수학습개발센터/평가인증센터에서 교육?학습 데이터 분석 업무를 담당하고 있다. XGBoost, 딥러닝, 문항반응이론(IRT), 지식공간(Knowledge Spaces) 등의 알고리즘을 이용한 학습부진 위험학생 조기 예측, 적응형 학습(adaptive learning) 등을 연구 중이다. 번역서로 『디지털 게임 교과서』(2012), 『유니티 입문』(2012), 『데이터 시각화, 인지과학을 만나다』(이상 에이콘출판, 2015), 『대학혁신을 위한 빅데이터와 학습분석』(시그마프레스, 2019)이 있으며, 전자책으로 출간된 『VR, 가까운 미래』(리디북스, 2016)를 집필했다.

장건희(옮긴이)

응용수학을 전공했지만 배운 것과는 무관한 삶을 살아왔다. 그러다가 머신러닝과 딥러닝이 주목받으면서 그간 잊고 살았던 수학과 통계가 자신에게 장점이 된다는 사실을 뒤늦게 깨달았다. 앞으로 인공지능 기술을 이용해 외국어를 배우지 않아도 되는 세상을 만들면 보람찬 인생일 것으로 생각하며 꾸준하게 딥러닝 기술을 탐구 중이다.

Information Provided By: : Aladin

Table of Contents

"[1장] 딥러닝의 발전
1.1 딥러닝 개요
__1.1.1 AI와 머신러닝
__1.1.2 딥러닝
1.2 딥러닝 응용 분야
__1.2.1 이미지 인식
__1.2.2 이미지 생성
__1.2.3 이상 탐지
__1.2.4 자연어 처리
__1.2.5 강화학습
__1.2.6 기타 분야에서의 응용 사례
1.3 이 책에서 다루는 딥러닝 기술
__1.3.1 RNN
__1.3.2 생성 모델

[2장] 학습 준비
2.1 아나콘다 개발 환경 구축
__2.1.1 아나콘다 다운로드
__2.1.2 아나콘다 설치
__2.1.3 주피터 노트북 실행
__2.1.4 주피터 노트북 사용
__2.1.5 노트북 종료
2.2 구글 코랩 사용
__2.2.1 구글 코랩 준비
__2.2.2 코랩 노트북 사용
__2.2.3 GPU 사용
__2.2.4 파일 사용
2.3 파이썬 기초
__2.3.1 변수와 변수형
__2.3.2 연산자
__2.3.3 리스트
__2.3.4 튜플
__2.3.5 딕셔너리
__2.3.6 if문 
__2.3.7 for문
__2.3.8 함수
__2.3.9 변수의 범위
__2.3.10 클래스
2.4 넘파이와 맷플롯립
__2.4.1 모듈 임포트
__2.4.2 넘파이 배열
__2.4.3 배열을 생성하는 다양한 함수
__2.4.4 reshape를 이용한 형태 변환
__2.4.5 배열 연산
__2.4.6 원소 값에 접근
__2.4.7 그래프 그리기
__2.4.8 이미지 생성
2.5 수학 기초
__2.5.1 벡터
__2.5.2 행렬
__2.5.3 각 원소 간의 곱셈
__2.5.4 행렬 곱
__2.5.5 행렬 전치
__2.5.6 미분
__2.5.7 연쇄 법칙
__2.5.8 편미분
__2.5.9 연쇄 법칙의 확장
__2.5.10 정규분포

[3장] 딥러닝 기초
3.1 딥러닝 개요
__3.1.1 딥러닝이란?
__3.1.2 층의 방향과 층의 개수
__3.1.3 경사 하강법
__3.1.4 에포크와 배치
3.2 전결합층 순전파
__3.2.1 순전파의 수식
__3.2.2 순전파를 행렬로 표현
__3.2.3 순전파를 코드로 구현
3.3 전결합층 역전파
__3.3.1 역전파 수식
__3.3.2 역전파를 행렬로 표현
__3.3.3 역전파를 코드로 구현
3.4 전결합층 구현
__3.4.1 공통 클래스 구현
__3.4.2 은닉층 구현
__3.4.3 출력층 구현
3.5 단순한 딥러닝 구현
__3.5.1 손글씨 숫자 이미지 데이터 확인
__3.5.2 데이터 전처리
__3.5.3 순전파와 역전파
__3.5.4 미니 배치 구현
3.6 손글씨 숫자 이미지 인식의 전체 코드

[4장] RNN
4.1 RNN 개요
4.2 RNN층의 순전파
__4.2.1 순전파 개요
__4.2.2 순전파 수식
__4.2.3 순전파를 코드로 구현
4.3 RNN층의 역전파
__4.3.1 역전파 수식
__4.3.2 역전파를 행렬로 표현
__4.3.3 역전파를 코드로 구현
4.4 RNN층 구현
__4.4.1 RNN층 클래스 
4.5 간단한 구조의 RNN 구현
__4.5.1 훈련 데이터 생성
__4.5.2 데이터 전처리
4.5.3 훈련
__4.5.4 예측
__4.5.5 곡선 생성
__4.5.6 sin 곡선 예측에 대한 전체 코드
4.6 2진수 덧셈 학습
__4.6.1 2진수 덧셈
__4.6.2 2진수 준비
__4.6.3 출력층
__4.6.4 훈련
__4.6.5 2진수 계산에 대한 전체 코드
4.7 RNN의 단점

[5장] LSTM
5.1 LSTM 개요
__5.1.1 LSTM 개요
__5.1.2 기억 셀
__5.1.3 망각 게이트 주변
__5.1.4 입력 게이트와 새로운 기억
__5.1.5 출력 게이트
5.2 LSTM층의 순전파
__5.2.1 LSTM층의 순전파
__5.2.2 순전파 코드 구현
5.3 LSTM층의 역전파
__5.3.1 역전파 수식
__5.3.2 망각 게이트
__5.3.3 입력 게이트
__5.3.4 새로운 기억
__5.3.5 출력 게이트
__5.3.6 행렬로 표현
__5.3.7 역전파 코드 구현
5.4 LSTM층 구현
__5.4.1 LSTM층 클래스
5.5 간단한 LSTM 구현
__5.5.1 LSTM 훈련
__5.5.2 sin 곡선 예측에 대한 전체 코드
5.6 LSTM을 이용한 문장 자동 생성
__5.6.1 텍스트 데이터 읽어들이기
__5.6.2 문자와 인덱스 관련
__5.6.3 문자 벡터화
__5.6.4 출력 결과의 의미
__5.6.5 텍스트 생성용 함수
__5.6.6 기울기 클리핑
__5.6.7 문장 생성에 대한 전체 코드
__5.6.8 결과 확인

[6장] GRU
6.1 GRU 소개 
__6.1.1 GRU
__6.1.2 리셋 게이트
__6.1.3 새로운 기억
__6.1.4 업데이트 게이트
6.2 GRU층의 순전파
__6.2.1 GRU의 순전파
__6.2.2 순전파를 코드로 구현
6.3 GRU층의 역전파
__6.3.1 새로운 기억
__6.3.2 업데이트 게이트
__6.3.3 리셋 게이트
__6.3.4 입력의 기울기
__6.3.5 이전 시점 출력의 기울기
__6.3.6 GRU의 각 기울기를 행렬로 나타내기
__6.3.7 GRU의 역전파를 코드로 구현하기
6.4 GRU층 구현
__6.4.1 GRU층의 클래스
6.5 GRU 구현
__6.5.1 GRU 구현의 전체 코드
6.6 RNN을 이용한 이미지 생성
__6.6.1 이미지를 시계열 데이터로 간주하기
__6.6.2 훈련 데이터 준비하기
__6.6.3 이미지 생성
__
6.7 Seq2Seq

[7장] VAE
7.1 VAE 소개
__7.1.1 오토인코더
__7.1.2 VAE
7.2 VAE의 구조
__7.2.1 잠재 변수 샘플링
__7.2.2 재파라미터화 트릭
__7.2.3 오차 정의
__7.2.4 재구성 오차
__7.2.5 규제화항
7.3 오토인코더의 구현
__7.3.1 신경망 구현
__7.3.2 각 신경망층의 구현
__7.3.3 순전파와 역전파 구현
__7.3.4 미니 배치 학습 구현
__7.3.5 오토인코더 구현의 전체 코드
__7.3.6 생성된 이미지 나타내기
7.4 VAE에 필요한 신경망층
__7.4.1 VAE 구성
__7.4.2 평균과 표준편차를 출력하는 신경망층
__7.4.3 샘플링층
__7.4.4 출력층
7.5 VAE의 구현
__7.5.1 순전파와 역전파
__7.5.2 VAE를 구현하는 전체 코드
__7.5.3 잠재 공간의 시각화
__7.5.4 이미지 생성하기
7.6 VAE에서 파생되는 기술
__7.6.1 조건부 VAE
__7.6.2 β-VAE
__7.6.3 VQ-VAE
__7.6.4 VQ-VAE-2

[8장] GAN
8.1 GAN 소개
__8.1.1 GAN
__8.1.2 DCGAN
__8.1.3 GAN의 용도
8.2 GAN의 구조
__8.2.1 식별자의 학습 과정
__8.2.2 생성자의 학습 과정
__8.2.3 오차의 정의
8.3 GAN에 필요한 신경망층
__8.3.1 생성자와 식별자의 구조
__8.3.2 생성자의 출력층
__8.3.3 식별자의 출력층
8.4 GAN의 구현
__8.4.1 순전파와 역전파
__8.4.2 GAN의 훈련
__8.4.3 GAN의 학습
__8.4.4 이미지 생성
__8.4.5 GAN을 구현하는 전체 코드
__8.4.6 오차와 정확도 추이
8.5 GAN에서 파생되는 기술
__8.5.1 조건부 GAN
__8.5.2 pix2pix
__8.5.3 Cycle GAN

[9장] 딥러닝 추가 학습을 위한 유용한 정보
9.1 최적화 알고리즘
__9.1.1 최적화 알고리즘 개요
__9.1.2 확률적 경사 하강법(SGD)
__9.1.3 모멘텀
__9.1.4 아다그라드
__9.1.5 RMSProp
__9.1.6 아담
__9.1.7 최적화 알고리즘 구현 예
9.2 학습 테크닉
__9.2.1 드롭아웃
__9.2.2 Leaky ReLU
__9.2.3 가중치 감소
__9.2.4 배치 정규화
9.3 데이터 세트 소개
__9.3.1 사이킷런 데이터 세트
__9.3.2 케라스 데이터 세트
9.4 딥러닝의 미래

[부록]
A.1 간단한 구조의 RNN을 이용한 텍스트 생성
A.2 GRU를 이용한 텍스트 생성
A.3 참고문헌

New Arrivals Books in Related Fields

Cartwright, Hugh M. (2021)
한국소프트웨어기술인협회. 빅데이터전략연구소 (2021)