HOME > 상세정보

상세정보

Transcendental numbers [electronic resource]

Transcendental numbers [electronic resource]

자료유형
E-Book(소장)
개인저자
Murty, M. Ram. Rath, Purusottam.
서명 / 저자사항
Transcendental numbers [electronic resource] / M. Ram Murty, Purusottam Rath.
발행사항
New York, NY :   Springer New York :   Imprint: Springer,   2014.  
형태사항
1 online resource (xiv, 217 p.).
ISBN
9781493908325
요약
This book provides an introduction to the topic of transcendental numbers for upper-level undergraduate and graduate students. The text is constructed to support a full course on the subject, including descriptions of both relevant theorems and their applications. While the first part of the book focuses on introducing key concepts, the second part presents more complex material, including applications of Baker’s theorem, Schanuel’s conjecture, and Schneider’s theorem. These later chapters may be of interest to researchers interested in examining the relationship between transcendence and L-functions. Readers of this text should possess basic knowledge of complex analysis and elementary algebraic number theory.
일반주기
Title from e-Book title page.  
내용주기
1. Liouville’s theorem -- 2. Hermite’s Theorem -- 3. Lindemann’s theorem -- 4. The Lindemann-Weierstrass theorem -- 5. The maximum modulus principle -- 6. Siegel’s lemma -- 7. The six exponentials theorem -- 8. Estimates for derivatives -- 9. The Schneider-Lang theorem -- 10. Elliptic functions -- 11. Transcendental values of elliptic functions -- 12. Periods and quasiperiods -- 13. Transcendental values of some elliptic integrals -- 14. The modular invariant -- 15. Transcendental values of the j-function -- 16. More elliptic integrals -- 17. Transcendental values of Eisenstein series -- 18. Elliptic integrals and hypergeometric series -- 19. Baker’s theorem -- 20. Some applications of Baker’s theorem -- 21. Schanuel’s conjecture -- 22. Transcendental values of some Dirichlet series -- 23. Proof of the Baker-Birch-Wirsing theorem -- 24. Transcendence of some infinite series -- 25. Linear independence of values of Dirichlet L-functions -- 26. Transcendence of values of modular forms -- 27. Transcendence of values of class group L-functions -- 28. Periods, multiple zeta functions and (3).      
서지주기
Includes bibliographical references and index.
이용가능한 다른형태자료
Issued also as a book.  
일반주제명
Transcendental numbers.
바로가기
URL
000 00000nam u2200205 a 4500
001 000046043017
005 20200908173612
006 m d
007 cr
008 200814s2014 nyu ob 001 0 eng d
020 ▼a 9781493908325
040 ▼a 211009 ▼c 211009 ▼d 211009
050 4 ▼a QA241-247.5
082 0 4 ▼a 512.7/3 ▼2 23
084 ▼a 512.73 ▼2 DDCK
090 ▼a 512.73
100 1 ▼a Murty, M. Ram.
245 1 0 ▼a Transcendental numbers ▼h [electronic resource] / ▼c M. Ram Murty, Purusottam Rath.
260 ▼a New York, NY : ▼b Springer New York : ▼b Imprint: Springer, ▼c 2014.
300 ▼a 1 online resource (xiv, 217 p.).
500 ▼a Title from e-Book title page.
504 ▼a Includes bibliographical references and index.
505 0 ▼a 1. Liouville’s theorem -- 2. Hermite’s Theorem -- 3. Lindemann’s theorem -- 4. The Lindemann-Weierstrass theorem -- 5. The maximum modulus principle -- 6. Siegel’s lemma -- 7. The six exponentials theorem -- 8. Estimates for derivatives -- 9. The Schneider-Lang theorem -- 10. Elliptic functions -- 11. Transcendental values of elliptic functions -- 12. Periods and quasiperiods -- 13. Transcendental values of some elliptic integrals -- 14. The modular invariant -- 15. Transcendental values of the j-function -- 16. More elliptic integrals -- 17. Transcendental values of Eisenstein series -- 18. Elliptic integrals and hypergeometric series -- 19. Baker’s theorem -- 20. Some applications of Baker’s theorem -- 21. Schanuel’s conjecture -- 22. Transcendental values of some Dirichlet series -- 23. Proof of the Baker-Birch-Wirsing theorem -- 24. Transcendence of some infinite series -- 25. Linear independence of values of Dirichlet L-functions -- 26. Transcendence of values of modular forms -- 27. Transcendence of values of class group L-functions -- 28. Periods, multiple zeta functions and (3).      
520 ▼a This book provides an introduction to the topic of transcendental numbers for upper-level undergraduate and graduate students. The text is constructed to support a full course on the subject, including descriptions of both relevant theorems and their applications. While the first part of the book focuses on introducing key concepts, the second part presents more complex material, including applications of Baker’s theorem, Schanuel’s conjecture, and Schneider’s theorem. These later chapters may be of interest to researchers interested in examining the relationship between transcendence and L-functions. Readers of this text should possess basic knowledge of complex analysis and elementary algebraic number theory.
530 ▼a Issued also as a book.
538 ▼a Mode of access: World Wide Web.
650 0 ▼a Transcendental numbers.
700 1 ▼a Rath, Purusottam.
856 4 0 ▼u https://oca.korea.ac.kr/link.n2s?url=http://dx.doi.org/10.1007/978-1-4939-0832-5
945 ▼a KLPA
991 ▼a E-Book(소장)

소장정보

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 중앙도서관/e-Book 컬렉션/ 청구기호 CR 512.73 등록번호 E14031734 도서상태 대출불가(열람가능) 반납예정일 예약 서비스 M

관련분야 신착자료

Aluffi, Paolo (2021)