HOME > 상세정보

상세정보

Extending bluetooth LE for mutual discovery in massive IoT environments

Extending bluetooth LE for mutual discovery in massive IoT environments

자료유형
학위논문
개인저자
한상록, 韓相錄
서명 / 저자사항
Extending bluetooth LE for mutual discovery in massive IoT environments / Sangrok Han
발행사항
Seoul :   Graduate School, Korea University,   2020  
형태사항
v, 85장 : 도표 ; 26 cm
기타형태 저록
Extending Bluetooth LE for Mutual Discovery in Massive IoT Environments   (DCOLL211009)000000127339  
학위논문주기
학위논문(박사)-- 고려대학교 대학원: 컴퓨터·전파통신공학과, 2020. 2
학과코드
0510   6YD36   378  
일반주기
지도교수: 김효곤  
서지주기
참고문헌: 장 75-85
이용가능한 다른형태자료
PDF 파일로도 이용가능;   Requires PDF file reader(application/pdf)  
비통제주제어
Bluetooth Low Energy,,
000 00000nam c2200205 c 4500
001 000046026233
005 20200428142514
007 ta
008 191229s2020 ulkd bmAC 000c eng
040 ▼a 211009 ▼c 211009 ▼d 211009
041 0 ▼a eng ▼b kor
085 0 ▼a 0510 ▼2 KDCP
090 ▼a 0510 ▼b 6YD36 ▼c 378
100 1 ▼a 한상록, ▼g 韓相錄
245 1 0 ▼a Extending bluetooth LE for mutual discovery in massive IoT environments / ▼d Sangrok Han
260 ▼a Seoul : ▼b Graduate School, Korea University, ▼c 2020
300 ▼a v, 85장 : ▼b 도표 ; ▼c 26 cm
500 ▼a 지도교수: 김효곤
502 1 ▼a 학위논문(박사)-- ▼b 고려대학교 대학원: ▼c 컴퓨터·전파통신공학과, ▼d 2020. 2
504 ▼a 참고문헌: 장 75-85
530 ▼a PDF 파일로도 이용가능; ▼c Requires PDF file reader(application/pdf)
653 ▼a Bluetooth Low Energy
776 0 ▼t Extending Bluetooth LE for Mutual Discovery in Massive IoT Environments ▼w (DCOLL211009)000000127339
900 1 0 ▼a Han, Sang-rok, ▼e
900 1 0 ▼a 김효곤, ▼g 金孝坤, ▼e 지도교수
945 ▼a KLPA

전자정보

No. 원문명 서비스
1
Extending bluetooth LE for mutual discovery in massive IoT environments (25회 열람)
PDF 초록 목차

소장정보

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/학위논문서고/ 청구기호 0510 6YD36 378 등록번호 123063743 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 2 소장처 과학도서관/학위논문서고/ 청구기호 0510 6YD36 378 등록번호 123063744 도서상태 대출가능 반납예정일 예약 서비스 B M

컨텐츠정보

초록

Bluetooth Low Energy (BLE) is probably the best technological tool that we can harness today for studies on close human interactions. It has a wide deployment base (i.e., on smartphones), has peer discovery as an inherent protocol feature, does not require infrastructure (e.g. satellites or base stations) to operate, and sparingly uses energy that is good for extended monitoring. In this dissertation, we show that we can use the BLE peer discovery capability on smartphones to detect and monitor massive and dynamic encounters, which would provide valuable insights into many epidemiological or sociological phenomena. However, being designed for more leisurely interactions, BLE needs some stretching in order to be used in large-scale operations. Specifically, the protocol design is not optimal to rapidly discover hundreds of devices in the communication range, whereas dense crowds and mass gatherings are not unrealistic in city life. Moreover, if the crowd is dynamic, discovery becomes even more time-pressed because encounters should be recorded before churn. In this dissertation, we push the BLE technology with the requirements to discover hundreds of devices before co-presence expires, and to work continually over a typical smartphone charge cycle. Specifically, we investigate how we should modify the BLE protocol and how we should set its protocol parameters for this purpose. We show that with the proposed changes and configurations, we can accelerate the speed of discovery for massive and dynamic crowds by more than an order of magnitude compared to the case that we naively follow the guidance of the current BLE standard.

목차

1 Introduction 1
 1.1 Organization of the Dissertation  6
2 Related Work 7
 2.1 GPS. 8
 2.2 RFID and sensor network 9
 2.3 Social media and search record  10
 2.4 Wi-Fi 11
 2.5 Bluetooth 12
 2.6 Energy-Ecient Discovery Protocol 14
 2.7 Bluetooth LE Analysis . 16
3 Encounter Monitoring with BLE 18
 3.1 System design 19
 3.2 Implementation  25
4 Speed of Discovery 28
 4.1 A Game of Two Random Walks  29
 4.2 Spacing ADV PDUs and Scans  38
 4.3 A Base Case Analysis  41
 4.4 System Dynamics in T, S, and m 45
  4.4.1 Impact of m . 45
  4.4.2 Impact of S . 49
  4.4.3 Impact of T . 50
 4.5 Robustness Under Packet Losses 53
  4.5.1 Real-life Packet Loss Rate 53
  4.5.2 Analysis 55
  4.5.3 Spacing of advertisements revisited .59
 4.6 Summary  60
5 Energy consumption 61
 5.1 Simulation Setup  62
 5.2 Results 65
6 Population Estimation for Adaptation 68
7 Conclusion 73
Bibliography 75