HOME > Detail View

Detail View

(파이썬으로 배우는) 자연어 처리 인 액션 (Loan 6 times)

Material type
단행본
Personal Author
Lane, Hobson Howard, Cole, 저 Hapke, Hannes Max, 저 류광, 역
Title Statement
(파이썬으로 배우는) 자연어 처리 인 액션 / 홉슨 레인, 하네스 막스 하프케, 콜 하워드 지음 ; 류광 옮김
Publication, Distribution, etc
파주 :   제이펍,   2020  
Physical Medium
618 p. : 삽화 ; 25 cm
Series Statement
(제이펍의) 인공지능 시리즈 = Jpub's A.I Series ; 25
Varied Title
Natural language processing in action : understanding, analyzing, and generating text with Python
ISBN
9791190665018
General Note
색인수록  
Subject Added Entry-Topical Term
Natural language processing (Computer science) Python (Computer program language)
000 00000cam c2200205 c 4500
001 000046025635
005 20200911105754
007 ta
008 200423s2020 ggka 001c kor
020 ▼a 9791190665018 ▼g 93000
035 ▼a (KERIS)BIB000015534931
040 ▼a 248002 ▼c 248002 ▼d 248002 ▼d 211032 ▼d 211092 ▼d 211009
041 1 ▼a kor ▼h eng
082 0 4 ▼a 005.133 ▼2 23
085 ▼a 005.133 ▼2 DDCK
090 ▼a 005.133 ▼b P999 2020z9
100 1 ▼a Lane, Hobson
245 2 0 ▼a (파이썬으로 배우는) 자연어 처리 인 액션 / ▼d 홉슨 레인, ▼e 하네스 막스 하프케, ▼e 콜 하워드 지음 ; ▼e 류광 옮김
246 1 9 ▼a Natural language processing in action : ▼b understanding, analyzing, and generating text with Python
260 ▼a 파주 : ▼b 제이펍, ▼c 2020
300 ▼a 618 p. : ▼b 삽화 ; ▼c 25 cm
440 1 0 ▼a (제이펍의) 인공지능 시리즈 = ▼x Jpub's A.I Series ; ▼v 25
500 ▼a 색인수록
650 0 ▼a Natural language processing (Computer science)
650 0 ▼a Python (Computer program language)
700 1 ▼a Howard, Cole, ▼e
700 1 ▼a Hapke, Hannes Max, ▼e
700 1 ▼a 류광, ▼e
900 1 0 ▼a 하프케, 하넥스 막스, ▼e
900 1 0 ▼a 하워드, 콜, ▼e

No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Science & Engineering Library/Sci-Info(Stacks1)/ Call Number 005.133 P999 2020z9 Accession No. 521005190 Availability In loan Due Date 2021-07-05 Make a Reservation Available for Reserve R Service M
No. 2 Location Medical Library/Monographs(3F)/ Call Number 005.133 P999 2020z9 Accession No. 131054211 Availability In loan Due Date 2021-08-18 Make a Reservation Available for Reserve R Service
No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Science & Engineering Library/Sci-Info(Stacks1)/ Call Number 005.133 P999 2020z9 Accession No. 521005190 Availability In loan Due Date 2021-07-05 Make a Reservation Available for Reserve R Service M
No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Medical Library/Monographs(3F)/ Call Number 005.133 P999 2020z9 Accession No. 131054211 Availability In loan Due Date 2021-08-18 Make a Reservation Available for Reserve R Service

Contents information

Book Introduction

사람의 언어를 읽고 해석할 수 있는 프로그램을 만들려는 모든 개발자를 위한 지침서다. 바로 사용할 수 있는 파이썬 패키지들을 이용해서 텍스트의 의미를 포착하고 그에 따라 반응하는 챗봇을 구축한다. 또한, 전통적인 NLP 접근 방식들은 물론이고, 좀 더 최근의 심층 학습 알고리즘과 텍스트 생성 기법들을 동원해서 날짜와 이름 추출, 텍스트 작성, 비정형 질문에 대한 응답 같은 여러 실질적인 NLP 문제들을 해결한다.

파이썬과 다양한 AI 패키지로 만드는 수준 높은 예제!
최신 NLP 제품과 서비스 개발을 위한 실용주의적 안내서!


최근 심층 학습(딥러닝) 기술이 발전하면서 응용 프로그램들이 대단히 정확하게 텍스트와 음성을 인식하게 되었다. 또한, 새로운 기술과 Keras나 TensorFlow 같은 사용하기 쉬운 도구들 덕분에 이제는 고품질 NLP(자연어 처리) 응용 프로그램을 예전보다 쉽게 만들어낼 수 있다.

이 책은 사람의 언어를 읽고 해석할 수 있는 프로그램을 만들려는 모든 개발자를 위한 지침서다. 이 책에서는 바로 사용할 수 있는 파이썬 패키지들을 이용해서 텍스트의 의미를 포착하고 그에 따라 반응하는 챗봇을 구축한다. 또한, 전통적인 NLP 접근 방식들은 물론이고, 좀 더 최근의 심층 학습 알고리즘과 텍스트 생성 기법들을 동원해서 날짜와 이름 추출, 텍스트 작성, 비정형 질문에 대한 응답 같은 여러 실질적인 NLP 문제들을 해결한다.

이 책의 주요 내용
■ Keras, TensorFlow, gensim, scikit-learn 사용법
■ NLP의 규칙 기반 접근 방식과 자료 기반 접근 방식
■ 규모 확장이 쉬운 NLP 파이프라인


Information Provided By: : Aladin

Author Introduction

홉슨 레인(지은이)

사람 대신 중요한 결정을 내리는 자율 시스템을 구축하는 분야에서 20년의 경험을 쌓았다. 그는 Keras, scikit-learn, PyBrain 같은 여러 오픈소스 프로젝트에 적극적으로 기여하며, 현재 Total Good에서 오픈소스 인지 조교(cognitive assistant) 구축을 비롯한 개방형 과학 연구 및 교육 프로젝트에 힘쓰고 있다. 또한, AIAA, PyCon, IEEE 등에 논문을 게재하거나 강연했으며, 로봇공학과 자동화에 관련된 여러 특허도 가지고 있다.

하네스 막스 하프케(지은이)

전기 공학자가 기계 학습 공학자로 변신한 사례다. 대학교에서는 신경망 개념을 재생 가능 에너지 발전소를 효과적으로 제어하는 데 적용했다. 구인·구직, 보건 응용 프로그램을 위한 심층 학습 모형과 기계 학습 파이프라인을 개발하는 프로젝트에 참여했으며, OSCON, Open Source Bridge, Hack University 같은 여러 콘퍼런스에서 기계 학습을 주제로 강연했다.

콜 하워드(지은이)

기계 학습 공학자이자 NLP 실무자이자 작가다. 대규모 전자상거래 추천 엔진들과 고차원 기계 지능 시스템을 위한 최신 심층 학습 신경망들을 개발했으며, 그의 모형들은 Kaggle 공모전에서 상위에 랭크되었다. 또한, Open Source Bridge Conference와 Hack University에서 합성곱 신경망과 순환 신경망에 관해, 그리고 그런 신경망들이 자연어 처리에서 차지하는 역할에 관해 강연했다.

류광(옮긴이)

25년 이상의 번역 경력을 가진 전문 번역가로, 『컴퓨터 프로그래밍의 예술』(The Art of Computer Programming) 시리즈와 『UNIX 고급 프로그래밍』(Advanced Programming in UNIX Environment) 제2판 및 제3판, 『Game Programming Gems』 시리즈를 포함해 80권 이상의 다양한 IT 전문서를 번역했다. 본서와 관련된 번역서로는 『bash를 활용한 사이버 보안 운영』, 『BPF로 리눅스 관측 가능성 향상하기』 등이 있다.

Information Provided By: : Aladin

Table of Contents

PART I 말 많은 컴퓨터: NLP의 기초 1
CHAPTER 1 사고의 단위: NLP의 개요 3
1.1 자연어 대 프로그래밍 언어 4
1.2 마법 5
1.2.1 대화하는 기계 6
1.2.2 수학 7
1.3 실제 응용들 9
1.4 컴퓨터의 ‘눈’으로 본 언어 11
1.4.1 자물쇠 언어 12
1.4.2 정규 표현식 13
1.4.3 간단한 챗봇 14
1.4.4 또 다른 방법 19
1.5 짧은 초공간 탐험 23
1.6 단어의 순서와 문법 25
1.7 챗봇의 자연어 처리 파이프라인 27
1.8 더 깊은 처리 30
1.9 자연어 IQ 32
요약 35

CHAPTER 2 나만의 어휘 구축: 단어 토큰화 37
2.1 어려운 문제: 어간 추출의 개요 39
2.2 토큰 생성기를 이용한 어휘 구축 40
2.2.1 내적 50
2.2.2 두 단어 모음의 중복 측정 51
2.2.3 토큰 개선 52
2.2.4 n-그램을 이용한 어휘 확장 58
2.2.5 어휘 정규화 66
2.3 감정 분석 76
2.3.1 VADER-규칙 기반 감정 분석기 78
2.3.2 단순 베이즈 모형 80
요약 84

CHAPTER 3 말 잘하는 수학: TF-IDF 벡터 85
3.1 단어 모음 86
3.2 벡터화 92
3.2.1 벡터 공간 95
3.3 지프의 법칙 101
3.4 주제 모형화 104
3.4.1 돌아온 지프 108
3.4.2 관련성 순위 110
3.4.3 주요 도구: scikit-learn 112
3.4.4 여러 TF-IDF 정규화 방법 113
3.4.5 Okapi BM25 115
3.4.6 다음 단계 116
요약 116

CHAPTER 4 단어 빈도에서 의미 찾기: 의미 분석 117
4.1 단어 빈도에서 주제 점수로 119
4.1.1 TF-IDF 벡터와 표제어 추출 119
4.1.2 주제 벡터 120
4.1.3 사고 실험 122
4.1.4 주제 점수를 매기는 알고리즘 127
4.1.5 LDA 분류기 129
4.2 잠재 의미 분석(LSA) 134
4.2.1 사고 실험의 실현 137
4.3 특잇값 분해 140
4.3.1 왼쪽 특이 벡터 행렬 U 142
4.3.2 특잇값 행렬 S 143
4.3.3 오른쪽 특이 벡터 행렬 VT 145
4.3.4 SVD 행렬의 방향 145
4.3.5 주제 절단 146
4.4 주성분 분석(PCA) 148
4.4.1 3차원 벡터에 대한 PCA 150
4.4.2 말을 떠나 다시 NLP로 돌아가서 152
4.4.3 PCA를 이용한 문자 메시지 잠재 의미 분석 154
4.4.4 절단된 SVD를 이용한 문자 메시지 잠재 의미 분석 157
4.4.5 스팸 분류에 대한 LSA의 정확도 158
4.5 잠재 디리클레 할당(LDiA) 161
4.5.1 LDiA의 기초 162
4.5.2 문자 메시지 말뭉치에 대한 LDiA 주제 모형 165
4.5.3 LDiA + LDA = 스팸 분류기 168
4.5.4 좀 더 공정한 비교: 주제가 32개인 LDiA 171
4.6 거리와 유사도 173
4.7 피드백에 기초한 방향 조정 176
4.7.1 선형 판별 분석(LDA) 177
4.8 주제 벡터의 위력 179
4.8.1 의미 기반 검색 181
4.8.2 개선안 184
요약 184

PART II 더 깊은 학습: 신경망 적용 185
CHAPTER 5 신경망 첫걸음: 퍼셉트론과 역전파 187
5.1 신경망의 구성요소 188
5.1.1 퍼셉트론 189
5.1.2 디지털 퍼셉트론 190
5.1.3 치우침 단위 191
5.1.4 오차 곡면을 누비며 207
5.1.5 경사로를 따라 활강 208
5.1.6 흔들어서 탈출 210
5.1.7 케라스: 신경망 파이썬 구현 211
5.1.8 더 깊게 배우고 싶다면 215
5.1.9 정규화: 스타일 있는 입력 215
요약 216

CHAPTER 6 단어 벡터를 이용한 추론: word2vec 활용 217
6.1 의미 기반 질의와 비유 218
6.1.1 비유 질문 219
6.2 단어 벡터 221
6.2.1 벡터 지향적 추론 225
6.2.2 word2vec의 단어 표현 계산 228
6.2.3 gensim.word2vec 모듈 사용법 238
6.2.4 나만의 단어 벡터 모형 만들기 241
6.2.5 word2vec 대 GloVe 244
6.2.6 fastText 245
6.2.7 word2vec 대 LSA 246
6.2.8 단어 관계의 시각화 247
6.2.9 인위적인 단어들 254
6.2.10 doc2vec을 이용한 문서 유사도 추정 256
요약 258

CHAPTER 7 단어 순서를 고려한 의미 분석: 합성곱 신경망 259
7.1 의미의 학습 261
7.2 도구 모음 262
7.3 합성곱 신경망 264
7.3.1 합성곱 신경망의 구조 264
7.3.2 단계 크기(보폭) 266
7.3.3 필터의 구성 266
7.3.4 여백 채우기 268
7.3.5 훈련(학습) 270
7.4 다시 텍스트로 271
7.4.1 케라스로 합성곱 신경망 구현: 자료 준비 273
7.4.2 합성곱 신경망의 구조 279
7.4.3 풀링 280
7.4.4 드롭아웃 283
7.4.5 마지막 층 추가 284
7.4.6 모형의 저장 및 시험 286
7.4.7 모형을 NLP 파이프라인에 도입 289
7.4.8 나머지 이야기 290
요약 292

CHAPTER 8 돌고 도는 신경망: 순환 신경망 293
8.1 과거를 아는 순환 신경망 296
8.1.1 시간에 대한 역전파 301
8.1.2 무엇을 언제 갱신하는가? 303
8.1.3 정리 306
8.1.4 항상 그렇듯이 함정이 있다 307
8.1.5 케라스를 이용한 순환 신경망 구현 307
8.2 모형의 컴파일 312
8.3 모형의 훈련 315
8.4 초매개변수 조율 316
8.5 예측 319
8.5.1 상태 유지 320
8.5.2 양방향 처리 321
8.5.3 순환층 출력의 의미 323
요약 323

CHAPTER 9 장단기 기억망(LSTM 망)을 이용한 기억 유지 개선 325
9.1 장단기 기억망(LSTM 망) 327
9.1.1 시간에 대한 역전파 336
9.1.2 예제 문장으로 모형을 시험 339
9.1.3 더러운 자료 340
9.1.4 다시 더러운 자료로 돌아가서 344
9.1.5 단어보다 글자가 쉽다 345
9.1.6 말문이 열린 신경망 352
9.1.7 구체적인 예제 하나 354
9.1.8 무엇을 말할 것인가? 363
9.1.9 다른 종류의 기억 수단 363
9.1.10 더 깊이 들어가서 364
요약 366

CHAPTER 10 순차열 대 순차열 모형과 주의 메커니즘 367
10.1 부호기-복호기 구조 368
10.1.1 생각 벡터의 복호화 369
10.1.2 비슷한 구조들 371
10.1.3 대화 생성을 위한 순차열 대 순차열 모형 373
10.1.4 LSTM 복습 374
10.2 순차열 대 순차열 NLP 파이프라인 구축 375
10.2.1 순차열 대 순차열 훈련을 위한 자료 집합 준비 375
10.2.2 케라스의 순차열 대 순차열 모형 376
10.2.3 순차열 부호기 377
10.2.4 생각 벡터 복호기 379
10.2.5 순차열 대 순차열 신경망 조립 380
10.3 순차열 대 순차열 신경망의 훈련 381
10.3.1 출력 순차열 생성 381
10.4 순차열 대 순차열 신경망을 이용한 챗봇 구축 383
10.4.1 훈련 자료 준비 383
10.4.2 문자 사전 구축 384
10.4.3 원핫 부호화 훈련 집합 생성 385
10.4.4 순차열 대 순차열 챗봇의 훈련 386
10.4.5 순차열 생성을 위한 모형 설정 387
10.4.6 순차열 생성(예측) 387
10.4.7 응답문 생성 및 출력 388
10.4.8 챗봇과 대화 389
10.5 개선안 390
10.5.1 버키팅을 이용한 학습 복잡도 감소 390
10.5.2 주의 메커니즘 391
10.6 순차열 대 순차열 신경망의 실제 용도 393
요약 395

PART III 응용: 실제 NLP 문제들 397
CHAPTER 11 정보 추출: 개체명 인식과 질의응답 399
11.1 개체명과 개체 관계 399
11.1.1 지식 베이스 400
11.1.2 정보 추출 403
11.2 정규 패턴 404
11.2.1 정규 표현식 405
11.2.2 기계 학습 특징 추출로서의 정보 추출 406
11.3 추출할 만한 정보 408
11.3.1 GPS 좌표 추출 408
11.3.2 날짜 추출 409
11.4 관계의 추출 415
11.4.1 품사 태깅 416
11.4.2 개체명 정규화 420
11.4.3 관계의 정규화와 추출 422
11.4.4 단어 패턴 422
11.4.5 분할 423
11.4.6 split(‘.!?’)만으로는 안 되는 이유 424
11.4.7 정규 표현식을 이용한 문장 분할 426
11.5 실제 용도 428
요약 429

CHAPTER 12 챗봇(대화 엔진) 만들기 431
12.1 대화 능력 432
12.1.1 현대적 접근 방식들 434
12.1.2 혼합형 접근 방식 441
12.2 패턴 부합 접근 방식 441
12.2.1 AIML을 이용한 패턴 부합 챗봇 구현 443
12.2.2 패턴 부합의 그래프 시각화 450
12.3 근거화 451
12.4 정보 검색 454
12.4.1 문맥 관리의 어려움 454
12.4.2 정보 검색 기반 챗봇 예제 456
12.4.3 Chatterbot 소개 460
12.5 생성 모형 463
12.5.1 NLPIA에 관한 대화 464
12.5.2 각 접근 방식의 장단점 466
12.6 사륜구동 467
12.6.1 챗봇 프레임워크 Will 468
12.7 설계 과정 469
12.8 요령과 편법 473
12.8.1 예측 가능한 답이 나올 질문을 던진다 473
12.8.2 동문서답 474
12.8.3 최후의 대비책은 검색 474
12.8.4 흥미 유지 475
12.8.5 인연 만들기 475
12.8.6 감정 담기 475
12.9 실제 응용 분야 476
요약 477

CHAPTER 13 규모 확장: 최적화, 병렬화, 일괄 처리 479
13.1 자료가 너무 많으면 480
13.2 NLP 알고리즘의 최적화 480
13.2.1 색인화 481
13.2.2 고급 색인화 483
13.2.3 Annoy를 이용한 고급 색인화 485
13.2.4 근사적 색인이 꼭 필요한가? 490
13.2.5 실숫값의 색인화: 이산화 491
13.3 상수 RAM 알고리즘 492
13.3.1 gensim 492
13.3.2 그래프 계산 493
13.4 NLP 계산 병렬화 494
13.4.1 GPU를 이용한 NLP 모형의 훈련 495
13.4.2 대여와 구매 496
13.4.3 GPU 대여 옵션들 497
13.4.4 TPU(텐서 처리 장치) 498
13.5 모형 훈련의 메모리 요구량 줄이기 498
13.6 TensorBoard를 이용한 모형 성능 평가 501
13.6.1 단어 내장 시각화 502
요약 505

APPENDIX A NLP 도구들 507
A.1 Anaconda3 설치 508
A.2 NLPIA 설치 509
A.3 IDE 509
A.4 우분투 패키지 관리자 510
A.5 맥 OS 511
A.5.1 Homebrew 511
A.5.2 기타 개발용 도구 설치 512
A.5.3 조율 512
A.6 Windows 514
A.6.1 VM 설정 515
A.7 NLPIA의 편의 기능 515

APPENDIX B 파이썬 즐기기와 정규 표현식 517
B.1 문자열 다루기 518
B.1.1 문자열 형식들: str과 bytes 518
B.1.2 파이썬 문자열 템플릿 519
B.2 파이썬의 매핑 자료 구조: dict와 OrderedDict 519
B.3 정규 표현식 520
B.3.1 |-OR 기호 520
B.3.2 ()-그룹 묶기 521
B.3.3 []-문자 부류 522
B.4 코딩 스타일 523
B.5 실력 쌓기 523

APPENDIX C 벡터와 행렬: 기초 선형대수 524
C.1 벡터 524
C.1.1 거리 526

APPENDIX D 기계 학습의 도구와 기법 531
D.1 자료 선택과 편향 531
D.2 얼마나 적합해야 적합된 것인가? 533
D.3 문제를 알면 반은 해결된 것이다 534
D.4 교차 검증 535
D.5 과대적합 방지 536
D.5.1 정칙화 537
D.5.2 드롭아웃 538
D.5.3 배치 정규화 539
D.6 불균형 훈련 집합 539
D.6.1 과다표집 540
D.6.2 과소표집 540
D.6.3 자료 증강 541
D.7 성능 측정 542
D.7.1 분류 모형의 성능 측정 542
D.7.2 회귀 모형의 성능 측정 545
D.8 전문가의 조언 545

APPENDIX E AWS GPU 설정 548
E.1 AWS 인스턴스 설정 549
E.1.1 비용 관리 561

APPENDIX F 지역 민감 해싱(LSH) 564
F.1 고차원 벡터는 어렵다 564
F.1.1 벡터 공간의 색인과 해시 565
F.1.2 고차원적 사고 566
F.2 고차원 색인화 570
F.2.1 지역 민감 해싱 570
F.2.2 근사 최근접 이웃 검색 571
F.3 ‘좋아요’ 예측 571

참고 자료 573
용어집 586
찾아보기 595

New Arrivals Books in Related Fields