HOME > 상세정보

상세정보

(쿠버네티스에서 머신러닝이 처음이라면!) 쿠브플로우! (5회 대출)

자료유형
단행본
개인저자
이명환, 저 문근민, 저 홍석환, 저 김효동, 저
서명 / 저자사항
(쿠버네티스에서 머신러닝이 처음이라면!) 쿠브플로우! = Kube Flow! / 이명환 [외]저
발행사항
서울 :   디지털북스,   2020  
형태사항
307 p. : 삽화 ; 23 cm
ISBN
9788960883055
일반주기
공저자: 문근민, 홍석환, 김효동  
000 00000cam c2200205 c 4500
001 000046023169
005 20200407174057
007 ta
008 200407s2020 ulka 000c kor
020 ▼a 9788960883055 ▼g 93000
035 ▼a (KERIS)BIB000015545674
040 ▼a 241026 ▼c 241026 ▼d 211009
082 0 4 ▼a 006.31 ▼2 23
085 ▼a 006.31 ▼2 DDCK
090 ▼a 006.31 ▼b 2020z10
245 2 0 ▼a (쿠버네티스에서 머신러닝이 처음이라면!) 쿠브플로우! = ▼x Kube Flow! / ▼d 이명환 [외]저
260 ▼a 서울 : ▼b 디지털북스, ▼c 2020
300 ▼a 307 p. : ▼b 삽화 ; ▼c 23 cm
500 ▼a 공저자: 문근민, 홍석환, 김효동
700 1 ▼a 이명환, ▼e
700 1 ▼a 문근민, ▼e
700 1 ▼a 홍석환, ▼e
700 1 ▼a 김효동, ▼e
945 ▼a KLPA

소장정보

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/Sci-Info(1층서고)/ 청구기호 006.31 2020z10 등록번호 121252901 도서상태 대출중 반납예정일 2021-07-26 예약 예약가능 R 서비스 M

컨텐츠정보

책소개

쿠브플로우의 개념을 설명함과 동시에 간단한 실습을 제공함으로써 머신러닝 기술에 대한 총체적인 이해를 돕는다. 쿠브플로우를 통해서 머신러닝 모델작성 및 최적화 서빙 모델 구축까지 사용할 수 있으므로, 이 책을 통해 머신러닝의 큰 틀을 미리 체험해 볼 수 있을 것이다.

천재 바둑기사 '이세돌'과 인공지능 '알파고'의 바둑대결은 머신러닝 기술의 가치를 전 세계에 알리는 사건이었습니다. 이 대결 이후, 머신러닝에 대한 관심도가 높아지면서 많은 개발자들은 머신러닝에 뛰어들었지만, 기초적인 내용 이후의 많은 과정들이 질문으로만 남아있었습니다. 이 질문들을 해결해주는 가장 최신의 도구가 바로 '쿠브플로우'입니다.
이 책은 쿠브플로우의 개념을 설명함과 동시에 간단한 실습을 제공함으로써 머신러닝 기술에 대한 총체적인 이해를 돕습니다. 쿠브플로우를 통해서 머신러닝 모델작성 및 최적화 서빙 모델 구축까지 사용할 수 있으므로, 이 책을 통해 머신러닝의 큰 틀을 미리 체험해 볼 수 있을 것입니다. 당신이 만일 머신러닝에 입문하고자 하는 개발자라면 이 책은 좋은 가이드북이 될 것입니다.


정보제공 : Aladin

저자소개

문근민(지은이)

두다지 COO KAIST 산업디자인학과 졸업, 드론 창업에 이어서 AI 스타트업 (주)두다지에 조인하여 딥러닝 및 클라우드 생태계를 학습중이다. 인공지능을 통한 자동화와 관련 사업 개발에 관심이 많으며, 실제로 개발을 할 수 있는 전략 및 기획자가 되기 위해 노력중이다

이명환(지은이)

두다지 엔지니어 J2ME/WIPI를 시작으로 개발을 시작했고, 자바로 할 수 있는 대부분의 프로젝트를 다수 수행했다. 최근 두다지에서 행동인식 관련 프로젝트 등을 진행하면서 쿠버네티스와 쿠브플로우에 입문하였고 여기저기 핸즈온을 통해 쿠브플로우를 확산시키려 노력하고 있다. 인간과 동물들이 즐겁게 공생할 수 있는 기술에 아주 관심이 많다.

홍석환(지은이)

두다지 대표 KAIST 전산학 졸업, 넥슨 게임 개발자, KB투자증권 증권 데이터 분석가, (현) 두다지 대표 Kubernetes Forum 2019 Seoul 기조연설 2020년 이화여자대학교 겸임교수, 99회 컴퓨터시스템응용기술사 두 번 사업을 말아먹고 세 번째 사업 중이다.

김효동(지은이)

두다지 CTO 경희대 전자과 졸업 2009년 창업을 하여 IOT 플랫폼 개발을 하면서 플랫폼이 산업에 미치는 영향과 그 중요성에 대해 알게 되었고, 4차 산업의 핵심인 인공지능과 관련하여 개발자들이 좀 더 쉽게 접근 할 수 있는 AI 플랫폼을 개발 중이다. Kubernetes & Kubeflow 등의 open source 기반 AI 자동화에 관심이 많으며, 관련 내용을 주변 사람들에게 최대한 공유하고 발전시키려고 노력하고 있다.

정보제공 : Aladin

목차

PART01 Machine Learning 입문

Chatper 01 머신러닝의 기본 개념

1.1 챕터 설명 및 챕터 활용법

1.2 머신러닝 기초
1.2.1 선형 회귀(Linear Regression)
1.2.2 차원의 확장(Multi variable linear regression)
1.2.3 로지스틱 회귀(Logistic Regression)
1.2.4 소프트맥스 회귀(Softmax Regression)

1.3 기타 알아두면 좋은 개념 및 팁
1.3.1 학습률(learning rate)
1.3.2 배치 정규화(batch normalization)
1.3.3 과적합(overfitting)
1.3.4 딥러닝에 대해서

Chatper 02 딥러닝을 이용한 이미지 분석 실습

2.1 챕터 설명 및 실습 overview

2.2 개발 환경 세팅

2.2.1 구글 코랩(Google colaboratory) 설명
2.2.2 코랩 설치
2.2.3 코랩 환경설정
2.2.4 파이썬 및 케라스 설치

2.3 데이터셋 준비 및 CNN 모델 구축
2.3.1 구글 드라이브 마운트
2.3.2 학습 데이터셋 준비 및 이미지 전처리
2.3.3 CNN 모델 구축
2.3.4 데이터셋 학습

2.4 전이학습(transfer learning)
2.4.1 전이학습의 개념과 모델 적용
2.4.2 전이학습 코드 적용

PART02 쿠버네티스의 머신러닝 툴킷! Kubeflow!

Chatper 01 kubeflow

1.1 ML 워크플로우
1.1.1 ML 워크플로우란
1.1.2 모델 실험 단계
1.1.3 모델 생산 단계
1.1.4 ML 워크플로우 툴

1.2 kubeflow
1.2.1 kubeflow
1.2.2 kubeflow components on ML workflow
1.2.3 쿠베플로우 유저 인터페이스(UI)
1.2.4 API 와 SDK
1.2.5 쿠베플로우 컴포넌트들
1.2.6 쿠베플로우 버젼 정책

1.3 kubernetes
1.3.0 서문
1.3.1 컨테이너 개발 시대
1.3.2 쿠버네티스란
1.3.3 쿠버네티스 구조
1.3.4 오브젝트와 컨트롤러
1.3.5 오브젝트 템플릿
1.3.6 레이블과 셀렉터, 어노테이션
1.3.7 인그레스
1.3.8 컨피그 맵
1.3.9 시크릿
1.3.10 인증과 권한

1.4 쿠베플로우 설치
1.4.1 설치 조건
1.4.2 쿠버네티스 설치
1.4.3 프라이빗 도커 레지스트리
1.4.4 k9s
1.4.5 kfctl
1.4.6 배포 플랫폼
1.4.7 스탠다드 쿠브플로우 설치
1.4.8 DEX버전 설치
1.4.9 프로파일
1.4.10 삭제

Chatper 02 Kubeflow Components

2.0 서론
2.1 Dashboard
2.1.1 개요
2.1.2 로컬에서 대쉬보드 접속하기

2.2 Notebook servers
2.2.1 개요
2.2.2 노트북 생성하기
2.2.3 쿠버네티스 리소스 확인하기
2.2.4 커스텀 이미지 생성
2.2.5 TroubleShooting

2.3 Fairing
2.3.1 소개
2.3.2 아키텍처
2.3.3 페어링 설치
2.3.4 페어링 설정
2.3.5 fairing.config
2.3.6 Preprocessor
2.3.7 Builder
2.3.8 Deployer
2.3.9 Config.run
2.3.10 Config.fn
2.3.11 fairing.ml_tasks

2.4 Katib
2.4.1 소개
2.4.2 하이퍼파라미터와 하이퍼라미터 최적화
2.4.3 뉴럴 아키텍처 탐색
2.4.4 아키텍처
2.4.5 Experiment
2.4.6 검색 알고리즘
2.4.7 Metric collector
2.4.8 Component
2.4.9 카티브 Web UI
2.4.10 Rest API
2.4.11 Command-line interfaces
2.4.12 카티브 단독 설치

2.5 Pipeline
2.5.1 소개
2.5.2 파이프라인
2.5.3 아키택쳐
2.5.3 컴포넌트
2.5.4 그래프(Graph)
2.5.5 런(Run), 리커링 런(Recurring Run)
2.5.6 런 트리거(Run Trigger)
2.5.7 스텝(Step)
2.5.8 Experiment
2.5.9 Output Artifact
2.5.10 파이프라인 인터페이스
2.5.11 파이프라인 단독 설치
2.5.12 파이프라인 SDK 설치
2.5.13 파이프라인SDK 패키지 둘러보기
2.5.14 SDK로 파이프라인 만들기
2.5.15 경랑 파이선 컴포넌트
2.5.16 파라미터(PipelineParam)
2.5.17 메트릭스(Matrix)
2.5.18 쿠버네티스 리소스 컴포넌트

2.6 Training of ML models
2.6.1 TFJob
2.6.2 PyTorchJob
2.6.3 MXJob(MXNet)
2.6.4 MPIJob
2.6.5 ChainerJob

2.7 Serving Models
2.7.1 개요
2.7.2 KFServing
2.7.3 InferenceService
2.7.4 Seldon Serving

2.8 Metadata
2.8.1 개요
2.8.2 설치
2.8.3 SDK
2.8.4 Metadata Web UI
2.8.5 Watcher

Chatper 03 핸즈온 쿠베플로우

3.1 Traning Mnist with Fairing
3.1.1 Notebook provisioning
3.1.2 fashion mnist 실행
3.1.3 fashion Mnist를 Fairing job으로 바꾸기
3.1.4 Job 실행해보기
3.1.5 이제 잡은 그만 던져도 될꺼 같은데

3.2 카티브로 하이퍼파라미터 최적화하기
3.2.1 fashion Mnist를 katib job으로 던질 수 있게 변형하기
3.2.2 카티브 experiment CRD 생성하기
3.2.3 jupyter notebook에서 katib job 실행하기
3.2.4 카티브 Trial 그래프 분석하기

3.3 추론 모델 서버 만들어 보기
3.3.1 모델 준비하기
3.3.2 KFServing을 이용한 추론 모델 서버 구성
3.3.3 추론 모델 테스트

3.4 파이프라인으로 ML워크플로우 만들기
3.4.1 파이프라인에 불륨 붙여보기
3.4.2 리커링 런(Recurring Run)으로 스토리지에 계속 데이터를 쌓아보기
3.4.3 학습부터 서빙까지 파이프라인으로

3.5 Caltech101 최적화
3.5.0 개요
3.5.1 일단 페어링
3.5.2 카티브를 위한 메트릭설정
3.5.3 카티브 Submit!
3.5.4 Trial 그래프 분석하기
3.5.5 노트북에서 카티브 Experiment 실행하기
3.5.6 Experiment 실행을 페어링으로 감싸기
3.5.7 파이프라인에서 Experiment 실행해보기
3.5.8 카티브 결과 조회하기

관련분야 신착자료

Baumer, Benjamin (2021)
데이터분석과인공지능활용편찬위원회 (2021)
Harrison, Matt (2021)