HOME > 상세정보

상세정보

파이썬 머신러닝 완벽 가이드 : 다양한 캐글 예제와 함께 기초 알고리즘부터 최신 기법까지 배우는 / 개정판 (33회 대출)

자료유형
단행본
개인저자
권철민
서명 / 저자사항
파이썬 머신러닝 완벽 가이드 : 다양한 캐글 예제와 함께 기초 알고리즘부터 최신 기법까지 배우는 / 권철민 지음
판사항
개정판
발행사항
파주 :   위키북스,   2020  
형태사항
xvi, 632 p. : 삽화(일부천연색), 도표 ; 24 cm
총서사항
데이터 사이언스 시리즈 = DS ; 050
ISBN
9791158391928
일반주기
색인수록  
000 00000cam c2200205 c 4500
001 000046017996
005 20200218182509
007 ta
008 200218s2020 ggkad 001c kor
020 ▼a 9791158391928 ▼g 93500
040 ▼a 211009 ▼c 211009 ▼d 211009
082 0 4 ▼a 005.133 ▼a 006.31 ▼2 23
085 ▼a 005.133 ▼2 DDCK
090 ▼a 005.133 ▼b P999 2020z4
100 1 ▼a 권철민
245 1 0 ▼a 파이썬 머신러닝 완벽 가이드 : ▼b 다양한 캐글 예제와 함께 기초 알고리즘부터 최신 기법까지 배우는 / ▼d 권철민 지음
250 ▼a 개정판
260 ▼a 파주 : ▼b 위키북스, ▼c 2020
300 ▼a xvi, 632 p. : ▼b 삽화(일부천연색), 도표 ; ▼c 24 cm
440 0 0 ▼a 데이터 사이언스 시리즈 = ▼x DS ; ▼v 050
500 ▼a 색인수록
945 ▼a KLPA

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 중앙도서관/제2자료실(3층)/ 청구기호 005.133 P999 2020z4 등록번호 111826644 도서상태 대출중 반납예정일 2021-08-18 예약 예약가능 R 서비스 M
No. 2 소장처 중앙도서관/제2자료실(3층)/ 청구기호 005.133 P999 2020z4 등록번호 111833026 도서상태 대출중 반납예정일 2021-08-17 예약 서비스 M
No. 3 소장처 과학도서관/Sci-Info(1층서고)/ 청구기호 005.133 P999 2020z4 등록번호 121252390 도서상태 대출중 반납예정일 2021-08-21 예약 예약가능 R 서비스 M
No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 중앙도서관/제2자료실(3층)/ 청구기호 005.133 P999 2020z4 등록번호 111826644 도서상태 대출중 반납예정일 2021-08-18 예약 예약가능 R 서비스 M
No. 2 소장처 중앙도서관/제2자료실(3층)/ 청구기호 005.133 P999 2020z4 등록번호 111833026 도서상태 대출중 반납예정일 2021-08-17 예약 서비스 M
No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/Sci-Info(1층서고)/ 청구기호 005.133 P999 2020z4 등록번호 121252390 도서상태 대출중 반납예정일 2021-08-21 예약 예약가능 R 서비스 M

컨텐츠정보

책소개

이론 위주의 머신러닝 책에서 탈피해 다양한 실전 예제를 직접 구현해 보면서 머신러닝을 체득할 수 있도록 만들었다. 캐글과 UCI 머신러닝 리포지토리에서 난이도가 있는 실습 데이터를 기반으로 실전 예제를 구성했고, XGBoost, LightGBM, 스태킹 기법 등 캐글의 많은 데이터 사이언스에서 애용하는 최신 알고리즘과 기법에 대해 매우 상세하게 설명했다. 이번 개정판에서는 사이킷런 및 기타 라이브러리의 업데이트에 따른 전반적인 내용 및 소스코드 업데이트와 함께 질의 사항이 많은 부분들에 대한 상세한 설명을 추가했다.

자세한 이론 설명과 파이썬 실습을 통해 머신러닝을 완벽하게 배울 수 있습니다!

《파이썬 머신러닝 완벽 가이드》는 이론 위주의 머신러닝 책에서 탈피해 다양한 실전 예제를 직접 구현해 보면서 머신러닝을 체득할 수 있도록 만들었습니다. 캐글과 UCI 머신러닝 리포지토리에서 난이도가 있는 실습 데이터를 기반으로 실전 예제를 구성했고, XGBoost, LightGBM, 스태킹 기법 등 캐글의 많은 데이터 사이언스에서 애용하는 최신 알고리즘과 기법에 대해 매우 상세하게 설명했습니다.
이번 개정판에서는 사이킷런 및 기타 라이브러리의 업데이트에 따른 전반적인 내용 및 소스코드 업데이트와 함께 질의 사항이 많은 부분들에 대한 상세한 설명을 추가했습니다.

★ 이 책의 특징 ★

◎ 분류, 회귀, 차원 축소, 클러스터링 등 핵심 머신러닝 알고리즘에 대한 깊이 있는 설명
◎ 데이터 전처리, 머신러닝 알고리즘 적용, 하이퍼 파라미터 튜닝, 성능 평가 등 최적 머신러닝 모델 구성 방안 제시
◎ XGBoost, LightGBM, 스태킹 등 머신러닝 최신 기법에 대한 상세한 설명과 활용법
◎ 난이도 높은 캐글 문제를 직접 따라 해 보면서 실무 머신러닝 애플리케이션 개발 방법 체득(산탄테르 은행 고객 만족 예측, 신용카드 사기 검출, 부동산 가격 예측 고급 회귀 기법, Mercari 쇼핑몰 가격 예측 등)
◎ 텍스트 분석과 NLP를 위한 기반 이론과 다양한 실습 예제 제공(텍스트 분류, 감성 분석, 토픽 모델링, 문서 유사도, 문서 군집화와 유사도, KoNLPy를 이용한 네이버 영화 감성 분석 등)
◎ 다양한 추천 시스템을 직접 파이썬 코드로 구축하는 법을 제공


정보제공 : Aladin

저자소개

권철민(지은이)

엔코아 컨설팅, 한국 오라클을 거쳐 현재 kx systems에서 고성능 인메모리 DB인 kdb+의 Machine Learning 컨설턴트로 근무 중이다. 지난 20년간 50여 개 이상의 주요 고객사에서 데이터컨설팅 분야에 매진해 왔으며, 최근 몇 년간은 AI 기반의 Advanced Analytics 분야에 집중하고 있다. 직접 구현해 보지 않으면 절대 이해하지 못하는 평범한 두뇌의 소유자이며, 절망적인 프로젝트에 참여해 자기학대적인 노력으로 문제를 해결하는 이상한 성격의 소유자이기도 하다.

정보제공 : Aladin

목차

▣ 1장: 파이썬 기반의 머신러닝과 생태계 이해
1.1. 머신러닝의 개념
__머신러닝의 분류
__데이터 전쟁
__파이썬과 R 기반의 머신러닝 비교
1.2. 파이썬 머신러닝 생태계를 구성하는 주요 패키지
__파이썬 머신러닝을 위한 S/W 설치
1.3. 넘파이
__넘파이 ndarray 개요
__ndarray의 데이터 타입
__ndarray를 편리하게 생성하기 - arange, zeros, ones
__ndarray의 차원과 크기를 변경하는 reshape( )
__넘파이의 ndarray의 데이터 세트 선택하기 - 인덱싱(Indexing)
__행렬의 정렬 - sort( )와 argsort( )
__선형대수 연산 - 행렬 내적과 전치 행렬 구하기
1.4. 데이터 핸들링 - 판다스
__판다스 시작 - 파일을 DataFrame으로 로딩, 기본 API
__DataFrame과 리스트, 딕셔너리, 넘파이 ndarray 상호 변환
__DataFrame의 컬럼 데이터 세트 생성과 수정
__DataFrame 데이터 삭제
__Index 객체
__데이터 셀렉션 및 필터링
__정렬, Aggregation 함수, GroupBy 적용
__결손 데이터 처리하기
__apply lambda 식으로 데이터 가공
1.5. 정리

▣ 2장: 사이킷런으로 시작하는 머신러닝
2.1. 사이킷런 소개와 특징
2.2. 첫 번째 머신러닝 만들어 보기 - 붓꽃 품종 예측하기
2.3. 사이킷런의 기반 프레임워크 익히기
__Estimator 이해 및 fit( ), predict( ) 메서드
__사이킷런의 주요 모듈
__내장된 예제 데이터 세트
2.4. Model Selection 모듈 소개
__학습/테스트 데이터 세트 분리 - train_test_split()
__교차 검증
__GridSearchCV - 교차 검증과 최적 하이퍼 파라미터 튜닝을 한 번에
2.5. 데이터 전처리
__데이터 인코딩
__피처 스케일링과 정규화
__StandardScaler
__MinMaxScaler
__학습 데이터와 테스트 데이터의 스케일링 변환 시 유의점
2.6. 사이킷런으로 수행하는 타이타닉 생존자 예측
2.7. 정리

▣ 3장: 평가
3.1. 정확도(Accuracy)
3.2. 오차 행렬
3.3. 정밀도와 재현율
__정밀도/재현율 트레이드오프
__정밀도와 재현율의 맹점
3.4. F1 스코어
3.5. ROC 곡선과 AUC
3.6. 피마 인디언 당뇨병 예측
3.7. 정리

▣ 4장: 분류
4.1. 분류(Classification)의 개요
4.2. 결정 트리
__결정 트리 모델의 특징
__결정 트리 파라미터
__결정 트리 모델의 시각화
__결정 트리 과적합(Overfitting)
__결정 트리 실습 - 사용자 행동 인식 데이터 세트
4.3. 앙상블 학습
__앙상블 학습 개요
__보팅 유형 - 하드 보팅(Hard Voting)과 소프트 보팅(Soft Voting)
__보팅 분류기(Voting Classifier)
4.4. 랜덤 포레스트
__랜덤 포레스트의 개요 및 실습
__랜덤 포레스트 하이퍼 파라미터 및 튜닝
4.5. GBM(Gradient Boosting Machine)
__GBM의 개요 및 실습
__GBM 하이퍼 파라미터 및 튜닝
4.6. XGBoost(eXtra Gradient Boost)
__XGBoost 개요
__XGBoost 설치하기
__파이썬 래퍼 XGBoost 하이퍼 파라미터
__파이썬 래퍼 XGBoost 적용 - 위스콘신 유방암 예측
__사이킷런 래퍼 XGBoost의 개요 및 적용
4.7. LightGBM
__LightGBM 설치
__LightGBM 하이퍼 파라미터
__하이퍼 파라미터 튜닝 방안
__파이썬 래퍼 LightGBM과 사이킷런 래퍼 XGBoost, LightGBM 하이퍼 파라미터 비교
__LightGBM 적용 - 위스콘신 유방암 예측
4.8. 분류 실습 - 캐글 산탄데르 고객 만족 예측
__데이터 전처리
__XGBoost 모델 학습과 하이퍼 파라미터 튜닝
__LightGBM 모델 학습과 하이퍼 파라미터 튜닝
4.9. 분류 실습 - 캐글 신용카드 사기 검출
__언더 샘플링과 오버 샘플링의 이해
__데이터 일차 가공 및 모델 학습/예측/평가
__데이터 분포도 변환 후 모델 학습/예측/평가
__이상치 데이터 제거 후 모델 학습/예측/평가
__SMOTE 오버 샘플링 적용 후 모델 학습/예측/평가
4.10. 스태킹 앙상블
__기본 스태킹 모델
__CV 세트 기반의 스태킹
4.11. 정리

▣ 5장: 회귀
5.1. 회귀 소개
5.2. 단순 선형 회귀를 통한 회귀 이해
5.3. 비용 최소화하기 - 경사 하강법(Gradient Descent) 소개
5.4. 사이킷런 LinearRegression을 이용한 보스턴 주택 가격 예측
__LinearRegression 클래스 - Ordinary Least Squares
__회귀 평가 지표
__LinearRegression을 이용해 보스턴 주택 가격 회귀 구현
5.5. 다항 회귀와 과(대)적합/과소적합 이해
__다항 회귀 이해
__다항 회귀를 이용한 과소적합 및 과적합 이해
__편향-분산 트레이드오프(Bias-Variance Trade off)
5.6. 규제 선형 모델 - 릿지, 라쏘, 엘라스틱넷
__규제 선형 모델의 개요
__릿지 회귀
__라쏘 회귀
__엘라스틱넷 회귀
__선형 회귀 모델을 위한 데이터 변환
5.7. 로지스틱 회귀
5.8. 회귀 트리
5.9. 회귀 실습 - 자전거 대여 수요 예측
__데이터 클렌징 및 가공
__로그 변환, 피처 인코딩과 모델 학습/예측/평가
5.10. 회귀 실습 - 캐글 주택 가격: 고급 회귀 기법
__데이터 사전 처리(Preprocessing)
__선형 회귀 모델 학습/예측/평가
__회귀 트리 모델 학습/예측/평가
__회귀 모델의 예측 결과 혼합을 통한 최종 예측
__스태킹 앙상블 모델을 통한 회귀 예측
5.11. 정리

▣ 6장: 차원 축소
6.1. 차원 축소(Dimension Reduction) 개요
6.2. PCA(Principal Component Analysis)
__PCA 개요
6.3. LDA(Linear Discriminant Analysis)
__LDA 개요
__붓꽃 데이터 세트에 LDA 적용하기
6.4. SVD(Singular Value Decomposition)
__SVD 개요
__사이킷런 TruncatedSVD 클래스를 이용한 변환
6.5. NMF(Non-Negative Matrix Factorization)
__NMF 개요
6.6. 정리

▣ 7장: 군집화
7.1. K-평균 알고리즘 이해
__사이킷런 KMeans 클래스 소개
__K-평균을 이용한 붓꽃 데이터 세트 군집화
__군집화 알고리즘 테스트를 위한 데이터 생성
7.2. 군집 평가(Cluster Evaluation)
__실루엣 분석의 개요
__붓꽃 데이터 세트를 이용한 군집 평가
__군집별 평균 실루엣 계수의 시각화를 통한 군집 개수 최적화 방법
7.3. 평균 이동
__평균 이동(Mean Shift)의 개요
7.4. GMM(Gaussian Mixture Model)
__GMM(Gaussian Mixture Model) 소개
__GMM을 이용한 붓꽃 데이터 세트 군집화
__GMM과 K-평균의 비교
7.5. DBSCAN
__DBSCAN 개요
__DBSCAN 적용하기 - 붓꽃 데이터 세트
__DBSCAN 적용하기 - make_circles( ) 데이터 세트
7.6. 군집화 실습 - 고객 세그먼테이션
__고객 세그먼테이션의 정의와 기법
__데이터 세트 로딩과 데이터 클렌징
__RFM 기반 데이터 가공
__RFM 기반 고객 세그먼테이션
7.7. 정리

▣ 8장: 텍스트 분석
NLP이냐 텍스트 분석이냐?
8.1. 텍스트 분석 이해
__텍스트 분석 수행 프로세스
__파이썬 기반의 NLP, 텍스트 분석 패키지
8.2. 텍스트 사전 준비 작업(텍스트 전처리) - 텍스트 정규화
__클렌징
__텍스트 토큰화
__스톱 워드 제거
__Stemming과 Lemmatization
8.3. Bag of Words - BOW
__BOW 피처 벡터화
__사이킷런의 Count 및 TF-IDF 벡터화 구현: CountVectorizer, TfidfVectorizer
__BOW 벡터화를 위한 희소 행렬
__희소 행렬 - COO 형식
__희소 행렬 - CSR 형식
8.4. 텍스트 분류 실습 - 20 뉴스그룹 분류
__텍스트 정규화
__피처 벡터화 변환과 머신러닝 모델 학습/예측/평가
__사이킷런 파이프라인(Pipeline) 사용 및 GridSearchCV와의 결합
8.5. 감성 분석
__감성 분석 소개
__지도학습 기반 감성 분석 실습 - IMDB 영화평
__비지도학습 기반 감성 분석 소개
__SentiWordNet을 이용한 감성 분석
__VADER를 이용한 감성 분석
8.6. 토픽 모델링(Topic Modeling) - 20 뉴스그룹
8.7. 문서 군집화 소개와 실습(Opinion Review 데이터 세트)
__문서 군집화 개념
__Opinion Review 데이터 세트를 이용한 문서 군집화 수행하기
__군집별 핵심 단어 추출하기
8.8. 문서 유사도
__문서 유사도 측정 방법 - 코사인 유사도
__두 벡터 사잇각
__Opinion Review 데이터 세트를 이용한 문서 유사도 측정
8.9. 한글 텍스트 처리 - 네이버 영화 평점 감성 분석
__한글 NLP 처리의 어려움
__KoNLPy 소개
__데이터 로딩
8.10. 텍스트 분석 실습-캐글 Mercari Price Suggestion Challenge
__데이터 전처리
__피처 인코딩과 피처 벡터화
__릿지 회귀 모델 구축 및 평가
__LightGBM 회귀 모델 구축과 앙상블을 이용한 최종 예측 평가
8.11. 정리

▣ 9장: 추천 시스템
9.1. 추천 시스템의 개요와 배경
__추천 시스템의 개요
__온라인 스토어의 필수 요소, 추천 시스템
__추천 시스템의 유형
9.2. 콘텐츠 기반 필터링 추천 시스템
9.3. 최근접 이웃 협업 필터링
9.4. 잠재 요인 협업 필터링
__잠재 요인 협업 필터링의 이해
__행렬 분해의 이해
__확률적 경사 하강법을 이용한 행렬 분해
9.5. 콘텐츠 기반 필터링 실습 - TMDB 5000 영화 데이터 세트
__장르 속성을 이용한 영화 콘텐츠 기반 필터링
__데이터 로딩 및 가공
__장르 콘텐츠 유사도 측정
__장르 콘텐츠 필터링을 이용한 영화 추천
9.6. 아이템 기반 최근접 이웃 협업 필터링 실습
__데이터 가공 및 변환
__영화 간 유사도 산출
__아이템 기반 최근접 이웃 협업 필터링으로 개인화된 영화 추천
9.7. 행렬 분해를 이용한 잠재 요인 협업 필터링 실습
9.8. 파이썬 추천 시스템 패키지 - Surprise
__Surprise 패키지 소개
__Surprise를 이용한 추천 시스템 구축
__Surprise 주요 모듈 소개
__Surprise 추천 알고리즘 클래스
__베이스라인 평점
__교차 검증과 하이퍼 파라미터 튜닝
__Surprise를 이용한 개인화 영화 추천 시스템 구축
9.9. 정리

관련분야 신착자료