HOME > 상세정보

상세정보

파이썬을 활용한 비지도 학습 : 비구조 데이터로부터 숨겨진 패턴과 관계 찾기

자료유형
단행본
개인저자
Johnston, Benjamin Jones, Aaron, 저 Kruger, Christopher, 저 조경빈, 역
서명 / 저자사항
파이썬을 활용한 비지도 학습 : 비구조 데이터로부터 숨겨진 패턴과 관계 찾기 / 벤자민 존스턴, 애런 존스, 크리스토퍼 크루거 지음 ; 조경빈 옮김
발행사항
서울 :   에이콘,   2019  
형태사항
526 p. : 삽화, 도표 ; 24 cm
원표제
Applied unsupervised learning with Python : discover hidden patterns and relationships in unstructured data with Python
ISBN
9791161753652
일반주기
색인수록  
일반주제명
Python (Computer program language)
000 00000cam c2200205 c 4500
001 000046009172
005 20191217160826
007 ta
008 191216s2019 ulkad 001c kor
020 ▼a 9791161753652 ▼g 93000
040 ▼a 211009 ▼c 211009 ▼d 211009
041 1 ▼a kor ▼h eng
082 0 4 ▼a 005.133 ▼2 23
085 ▼a 005.133 ▼2 DDCK
090 ▼a 005.133 ▼b P999 2019z43
100 1 ▼a Johnston, Benjamin
245 1 0 ▼a 파이썬을 활용한 비지도 학습 : ▼b 비구조 데이터로부터 숨겨진 패턴과 관계 찾기 / ▼d 벤자민 존스턴, ▼e 애런 존스, ▼e 크리스토퍼 크루거 지음 ; ▼e 조경빈 옮김
246 1 9 ▼a Applied unsupervised learning with Python : ▼b discover hidden patterns and relationships in unstructured data with Python
260 ▼a 서울 : ▼b 에이콘, ▼c 2019
300 ▼a 526 p. : ▼b 삽화, 도표 ; ▼c 24 cm
500 ▼a 색인수록
650 0 ▼a Python (Computer program language)
700 1 ▼a Jones, Aaron, ▼e
700 1 ▼a Kruger, Christopher, ▼e
700 1 ▼a 조경빈, ▼e
900 1 0 ▼a 크루거, 크리스토퍼, ▼e
900 1 0 ▼a 존스턴, 벤자민, ▼e
900 1 0 ▼a 존스, 애런, ▼e

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/Sci-Info(1층서고)/ 청구기호 005.133 P999 2019z43 등록번호 121251520 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 2 소장처 세종학술정보원/과학기술실/ 청구기호 005.133 P999 2019z43 등록번호 151348244 도서상태 대출중 반납예정일 2021-04-28 예약 예약가능 R 서비스
No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/Sci-Info(1층서고)/ 청구기호 005.133 P999 2019z43 등록번호 121251520 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 세종학술정보원/과학기술실/ 청구기호 005.133 P999 2019z43 등록번호 151348244 도서상태 대출중 반납예정일 2021-04-28 예약 예약가능 R 서비스

컨텐츠정보

책소개

다양한 예제를 통해 파이썬을 사용한 비지도 학습을 자세하고 친절하게 설명한다. 머신 러닝을 잘 모르는 독자라도 이 책을 따라가다 보면 손쉽게 비지도 학습의 개념을 이해하고 자연스럽게 자신만의 데이터로 흥미로운 분석을 시도하게 될 것이다.

★ 이 책에서 다루는 내용 ★

■ 클러스터링의 기본과 중요성 이해
■ 기본 제공 패키지를 사용해 처음부터 k-평균, 계층적 및 DBSCAN 클러스터링 알고리즘 구축
■ 차원 축소 및 적용
■ Scikit-learn으로 Iris 데이터셋에서 PCA 구현 및 분석
■ Keras로 CIFAR-10 데이터셋용 오토인코더 모델 구축
■ 머신 러닝 익스텐션(Mlxtend)을 사용한 Apriori 알고리즘으로 거래 데이터 연구

★ 이 책의 대상 독자 ★

비지도 학습에 관심 있는 개발자, 데이터 과학자와 머신 러닝에 관심 있는 독자를 위한 책이다. 지수나 제곱근, 평균, 중위값 등을 포함한 수학 개념의 기초 지식과 함께 파이썬 프로그래밍 관련 지식이 필요하다.


정보제공 : Aladin

저자소개

벤자민 존스턴(지은이)

세계 최고의 데이터 기반 의료 기업의 선임 데이터 과학자다. 문제 정의부터 솔루션 연구 개발, 최종 배포까지 제품 개발 전 과정에 걸쳐 혁신적인 디지털 솔루션 개발에 참여하고 있다. 현재 이미지 처리와 심층신경망 전문으로 머신 러닝 박사 과정을 이수하고 있다. 의료기기 설계 및 개발 분야에서 10년 이상의 경력이 있으며, 다양한 기술 분야에 종사하고 있다. 오스트레일리아 시드니대학교에서 공학 및 의학 분야의 1급 우등 학사 학위를 보유하고 있다.

애런 존스(지은이)

통계 컨설턴트이자 미국의 가장 큰 소매상 중 한 곳의 전임 데이터 과학자다. 소매, 미디어, 환경 과학 분야에서 예측 모델과 추론 모델, 수많은 데이터 제품을 만들었다. 시애틀에 살고 있으며 인과관계 모델링, 군집 분석 알고리즘, 자연어 처리, 베이지안 통계 등에 관심이 있다.

크리스토퍼 크루거(지은이)

광고 분야에서 선임 데이터 과학자로 일했다. 다양한 업종의 고객을 위해 확장 가능한 클러스터링 솔루션을 설계했다. 최근 코넬대학교에서 컴퓨터 과학 석사 학위를 받았고, 현재 컴퓨터 비전 분야에서 일하고 있다.

조경빈(옮긴이)

인프라웨어에서 웹 브라우저 엔진 개발에 참여했으며, 현재는 게임 개발사인 I&V 게임즈에서 신작 개발에 전념하고 있다. 형식에 얽매이기보다는 자유로움 속에서 효율을 찾는 과정에 관심이 많다. 대학 시절부터 다수의 전시회에 출품해왔으며 공모전 입상 경력이 있다. SKT T스토어 제1회 공모전 스마트폰 게임 부문에서 입상하기도 했고, 개인 자격으로 애플 앱스토어에 10개 이상의 앱을 등록해 미국 앱스토어에서 카테고리 1위에 오르는 등 다양한 실험도 해왔다. 국내 최초의 유니티 관련 서적인 『유니티 게임 엔진 한글 메뉴얼』(2010)을 번역했으며, 이후 에이콘출판사에서 출간한 다수의 책을 번역했다.

정보제공 : Aladin

목차

1장. 클러스터링 소개
__소개
__비지도 학습과 지도 학습의 차이
__클러스터링
____클러스터 식별
____2차원 데이터
____연습 1: 데이터에서 클러스터 인식
__k-평균 클러스터링 소개
____수학이 필요 없는 k-평균 연습
____k-평균 클러스터링 심화 연습
____대안 거리 메트릭-맨해튼 거리
____더 깊은 차원
____연습 2: 파이썬으로 유클리드 거리 계산
____연습 3: 거리 개념으로 클러스터 구성
____연습 4: 직접 k-평균 구현
____연습 5: 최적화를 통한 k-평균 구현
____클러스터링 성능: 실루엣 점수
____연습 6: 실루엣 점수 계산
____활동 1: k-평균 클러스터링 구현
__요약

2장. 계층적 클러스터링
__소개
____클러스터링 다시 살펴보기
____k-평균 다시 살펴보기
__계층 구조
__계층적 클러스터링 소개
____계층적 클러스터링 수행 단계
____계층적 클러스터링 연습 예제
____연습 7: 계층 구성
__연결
____활동 2: 연결 기준 적용
__응집 vs 분산 클러스터링
____연습 8: scikit-learn을 사용한 응집 클러스터링 구현
____활동 3: 계층적 클러스터링과 k-평균 비교
__k-평균 vs 계층적 클러스터링
__요약

3장. 이웃 접근과 DBSCAN
__소개
____이웃으로서의 클러스터
__DBSCAN 소개
____DBSCAN 심화 학습
____DBSCAN 알고리즘 연습
____연습 9: 이웃 반경 크기의 영향 평가
____DBSCAN 속성 - 이웃 반경
____활동 4: DBSCAN 처음부터 구현
____DBSCAN 속성-최소 지점 수
____연습 10: 최소 지점 수의 영향 평가
____활동 5: DBSCAN과 k-평균 그리고 계층적 클러스터링 비교
__DBSCAN 대 k-평균과 계층적 클러스터링
__요약

4장. 차원 축소와 PCA
__소개
____차원 축소란 무엇인가?
____차원 축소 적용
____차원의 저주
__차원 축소 기법 개요
____차원 축소와 비지도 학습
__PCA
____평균
____표준편차
____공분산
____공분산 행렬
____연습 11: 통계의 기본 개념 이해
____고윳값 및 고유 벡터
____연습 12: 고윳값 및 고유 벡터 계산
____PCA 처리 절차
____연습 13: PCA 수동 실행
____연습 14: Scikit-Learn PCA
____활동 6: 수동 PCA와 scikit-learn 비교
____압축된 데이터셋 복원
____연습 15: 수동 PCA로 분산 감소 시각화
____연습 16: 분산 감소 시각화
____연습 17: Matplotlib에서 3D 도표 그리기
____활동 7: 확장된 아이리스 데이터셋을 사용한 PCA
__요약

5장. 오토인코더
__소개
__인공 신경망 기초
____뉴런
____Sigmoid 함수
____정류 선형 단위
____연습 18: 인공 신경망의 뉴런 모델링
____활동 8: ReLU 활성화 함수를 사용한 뉴런 모델링
____신경망: 구조 정의
____연습 19: Keras 모델 정의
____신경망: 학습
____연습 20: Keras 신경망 훈련
____활동 9: MNIST 신경망
__오토인코더
____연습 21: 간단한 오토인코더
____활동 10: 간단한 MNIST 오토인코더
____연습 22: 다중 계층 오토인코더
____컨볼루셔널 신경망
____연습 23: 컨볼루셔널 오토인코더
____활동 11: MNIST 컨볼루셔널 오토인코더
__요약

6장. t-분포 확률적 이웃 임베딩
__소개
__확률적 이웃 임베딩
__t-분포 확률적 이웃 임베딩
____연습 24: t-SNE MNIST
____활동 12: 와인 t-SNE
__t-SNE 도표 해석
____퍼플렉서티
____연습 25: t-SNE MNIST와 퍼플렉서티
____활동 13: t-SNE 와인과 퍼플렉서티
____이터레이션
____연습 26: t-SNE MNIST와 반복
____활동 14: t-SNE 와인과 이터레이션
____시각화에 대한 최종 의견
__요약

7장. 토픽 모델링
__소개
____토픽 모델
____연습 27: 환경 설정
____토픽 모델 개요
____비즈니스 활용
____연습 28: 데이터 로딩
__텍스트 데이터 정리
____데이터 정리 기법
____연습 29: 단계별 데이터 정리
____연습 30: 데이터 정리 마무리
____활동 15: 트위터 데이터 로딩 및 정리
__잠재 디리클레 할당
____변분 추론
____백오브워즈
____연습 31: 카운트 벡터라이저를 사용한 백오브워즈 모델 생성
____퍼플렉서티
____연습 32: 주제의 수 선택
____연습 33: 잠재 디리클레 할당 실행
____연습 34: LDA 시각화
____연습 35: 4개 주제 시도
____활동 16: 잠재 디리클레 할당과 건강 트윗
____백오브워즈 추가 사항
____연습 36: TF-IDF를 사용한 백오브워즈 생성
__음수 미포함 행렬 분해
____프로베니우스 놈
____증배 갱신
____연습 37: 음수 미포함 행렬 분해
____연습 38: NMF 시각화
____활동 17: 음수 미포함 행렬 분해
__요약

8장. 장바구니 분석
__소개
__장바구니 분석
____활용 사례
____중요한 확률 지표
____연습 39: 샘플 거래 데이터 생성
____지지도
____신뢰도
____향상도와 레버리지
____확신
____연습 40: 지표 계산
__거래 데이터의 특징
____연습 41: 데이터 불러오기
____데이터 정리 및 형식화
____연습 42: 데이터 정리 및 포매팅
____데이터 인코딩
____연습 43: 데이터 인코딩
____활동 18: 전체 온라인 소매 데이터의 로딩과 준비
__Apriori 알고리즘
____계산 수정
____연습 44: Apriori 알고리즘 실행
____활동 19: 전체 온라인 소매 데이터셋에 Apriori 적용
__연관 규칙
____연습 45: 연관 규칙 도출
____활동 20: 전체 온라인 소매 데이터셋의 연관 규칙 찾기
__요약

9장. 핫스팟 분석
__소개
____공간 통계
____확률 밀도 함수
____산업에 핫스팟 분석 사용
__커널 밀도 추정
____대역폭 값
____연습 46: 대역폭 값의 효과
____최적의 대역폭 선택
____연습 47: 그리드 검색을 사용한 최적 대역폭 선택
____커널 함수
____연습 48: 커널 함수의 효과
____커널 밀도 추정 도출
____연습 49: 커널 밀도 추정의 도출 시뮬레이션
____활동 21: 1차원에서의 밀도 추정
__핫스팟 분석
____연습 50: Seaborn으로 데이터 로드 및 모델링
____연습 51: 베이스맵 작업
____활동 22: 런던에서의 범죄 분석
__요약

부록

관련분야 신착자료

한국데이터산업진흥원 (2020)