HOME > Detail View

Detail View

Advances in swarm intelligence for optimizing problems in computer science

Advances in swarm intelligence for optimizing problems in computer science

Material type
단행본
Personal Author
Nayyar, Anand. Le, Dac-Nhuong, 1983-. Nguyen, Nhu Gia.
Title Statement
Advances in swarm intelligence for optimizing problems in computer science / edited by Anand Nayyar, Dac-Nhuong Le, Nhu Gia Nguyen.
Publication, Distribution, etc
Boca Raton, FL :   CRC Press/Taylor & Francis Group,   c2019.  
Physical Medium
xiv, 298 p. : ill. ; 25 cm.
ISBN
9781138482517 (hardback : alk. paper) 9780429445927 (ebook)
요약
This book provides comprehensive details of all Swarm Intelligence based Techniques available till date in a comprehensive manner along with their mathematical proofs. It will act as foundation for authors, researchers and industry professionals--
Bibliography, Etc. Note
Includes bibliographical references and index.
Subject Added Entry-Topical Term
Swarm intelligence. Computer algorithms.
000 00000cam u2200205 a 4500
001 000046007425
005 20191206104928
008 191126s2019 flua b 001 0 eng d
010 ▼a 2018020199
020 ▼a 9781138482517 (hardback : alk. paper)
020 ▼a 9780429445927 (ebook)
035 ▼a (KERIS)REF000018714508
040 ▼a DLC ▼b eng ▼e rda ▼c DLC ▼d 211009
050 0 0 ▼a Q337.3 ▼b .A375 2019
082 0 4 ▼a 006.3 ▼2 23
082 0 0 ▼a 006.3/824 ▼2 23
084 ▼a 006.3 ▼2 DDCK
090 ▼a 006.3 ▼b A2447
245 0 0 ▼a Advances in swarm intelligence for optimizing problems in computer science / ▼c edited by Anand Nayyar, Dac-Nhuong Le, Nhu Gia Nguyen.
260 ▼a Boca Raton, FL : ▼b CRC Press/Taylor & Francis Group, ▼c c2019.
300 ▼a xiv, 298 p. : ▼b ill. ; ▼c 25 cm.
504 ▼a Includes bibliographical references and index.
520 ▼a This book provides comprehensive details of all Swarm Intelligence based Techniques available till date in a comprehensive manner along with their mathematical proofs. It will act as foundation for authors, researchers and industry professionals-- ▼c Provided by publisher.
650 0 ▼a Swarm intelligence.
650 0 ▼a Computer algorithms.
700 1 ▼a Nayyar, Anand.
700 1 ▼a Le, Dac-Nhuong, ▼d 1983-.
700 1 ▼a Nguyen, Nhu Gia.
945 ▼a KLPA

Holdings Information

No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Science & Engineering Library/Sci-Info(Stacks2)/ Call Number 006.3 A2447 Accession No. 121251188 Availability Available Due Date Make a Reservation Service B M

Contents information

Table of Contents

Contents





Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii


Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xv





1. Evolutionary Computation: Theory and Algorithms . . . . . . . . . . . . . . . .1


Anand Nayyar, Surbhi Garg, Deepak Gupta, and Ashish Khanna





1.1 History of Evolutionary Computation . . . . . . . . . . . . . . . . . . . . . .2


1.2 Motivation via Biological Evidence . . . . . . . . . . . . . . . . . . . . . . . . .3


1.3 Why Evolutionary Computing?. . . . . . . . . . . . . . . . . . . . . . . . . . . .5


1.4 Concept of Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . .6


1.5 Components of Evolutionary Algorithms . . . . . . . . . . . . . . . . . . .9


1.6 Working of Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . .13


1.7 Evolutionary Computation Techniques and Paradigms. . . . . . .15


1.8 Applications of Evolutionary Computing . . . . . . . . . . . . . . . . . .21


1.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23


References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23





2. Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27


Sandeep Kumar, Sanjay Jain, and Harish Sharma





2.1 Overview of Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . .27


2.2 Genetic Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32


2.3 Derivation of Simple Genetic Algorithm . . . . . . . . . . . . . . . . . . .39


2.4 Genetic Algorithms vs. Other Optimization Techniques . . . . . .43


2.5 Pros and Cons of Genetic Algorithms. . . . . . . . . . . . . . . . . . . . . .45


2.6 Hybrid Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45


2.7 Possible Applications of Computer Science via Genetic


Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46


2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47


References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48





3. Introduction to Swarm Intelligence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53


Anand Nayyar and Nhu Gia Nguyen





3.1 Biological Foundations of Swarm Intelligence . . . . . . . . . . . . . . .53


3.2 Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56


3.3 Concept of Swarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62


3.4 Collective Intelligence of Natural Animals. . . . . . . . . . . . . . . . . .64


3.5 Concept of Self-Organization in Social Insects. . . . . . . . . . . . . . .68


3.6 Adaptability and Diversity in Swarm Intelligence . . . . . . . . . . .70


3.7 Issues Concerning Swarm Intelligence . . . . . . . . . . . . . . . . . . . . .71


3.8 Future Swarm Intelligence in Robotics - Swarm Robotics . . . . .73


3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75


References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75





4. Ant Colony Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79


Bandana Mahapatra and Srikanta Pattnaik





4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80


4.2 Concept of Artificial Ants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81


4.3 Foraging Behaviour of Ants and Estimating Effective Paths . . . 83


4.4 ACO Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87


4.5 ACO Applied Toward Travelling Salesperson Problem. . . . . . .91


4.6 ACO Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93


4.7 The Ant Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95


4.8 Comparison of Ant Colony Optimization Algorithms . . . . . . . .97


4.9 ACO for NP Hard Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . .102


4.10 Current Trends in ACO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105


4.11 Application of ACO in Different Fields . . . . . . . . . . . . . . . . . . .106


4.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109


References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109





5. Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115


Shanthi M.B., D. Komagal Meenakshi, and Prem Kumar Ramesh





5.1 Particle Swarm Optimization - Basic Concepts . . . . . . . . . . . . .116


5.2 PSO Variants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118


5.3 Particle Swarm Optimization (PSO) - Advanced Concepts . . . 134


5.4 Applications of PSO in Various Engineering Domains. . . . . . .139


5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141


References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141





6. Artificial Bee Colony, Firefly Swarm Optimization, and Bat


Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145


Sandeep Kumar and Rajani Kumari





6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146


6.2 The Artificial Bee Colony Algorithm. . . . . . . . . . . . . . . . . . . . . .147


6.3 The Firefly Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163


6.4 The Bat Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170


x Contents


6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177


References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178





7. Cuckoo Search Algorithm, Glowworm Algorithm,


WASP, and Fish Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . . .183


Akshi Kumar





7.1 Introduction to Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . .184


7.2 Cuckoo Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186


7.3 Glowworm Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200


7.4 Wasp Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208


7.5 Fish Swarm Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213


7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221


References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221





8. Misc. Swarm Intelligence Techniques . . . . . . . . . . . . . . . . . . . . . . . . . .225


M. Balamurugan, S. Narendiran, and Sarat Kumar Sahoo





8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226


8.2 Termite Hill Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227


8.3 Cockroach Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . .230


8.4 Bumblebee Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232


8.5 Social Spider Optimization Algorithm . . . . . . . . . . . . . . . . . . . .234


8.6 Cat Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237


8.7 Monkey Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239


8.8 Intelligent Water Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241


8.9 Dolphin Echolocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242


8.10 Biogeography-Based Optimization . . . . . . . . . . . . . . . . . . . . . . .244


8.11 Paddy Field Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247


8.12 Weightless Swarm Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . .248


8.13 Eagle Strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249


8.14 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250


References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251





9. Swarm Intelligence Techniques for Optimizing Problems. . . . . . . . .253


K. Vikram and Sarat Kumar Sahoo





9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253


9.2 Swarm Intelligence for Communication Networks. . . . . . . . . .254


9.3 Swarm Intelligence in Robotics . . . . . . . . . . . . . . . . . . . . . . . . . .257


9.4 Swarm Intelligence in Data Mining. . . . . . . . . . . . . . . . . . . . . . .261


9.5 Swarm Intelligence and Big Data. . . . . . . . . . . . . . . . . . . . . . . . .264


9.6 Swarm Intelligence in Artificial Intelligence (AI) . . . . . . . . . . .268


9.7 Swarm Intelligence and the Internet of Things (IoT). . . . . . . . .270


9.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273


References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

New Arrivals Books in Related Fields

Baumer, Benjamin (2021)