HOME > 상세정보

상세정보

Advanced spatial modeling with stochastic partial differential equations using R and INLA

Advanced spatial modeling with stochastic partial differential equations using R and INLA (1회 대출)

자료유형
단행본
개인저자
Krainski, E. T. (Elias T.).
서명 / 저자사항
Advanced spatial modeling with stochastic partial differential equations using R and INLA / E.T. Krainski ... [et al.].
발행사항
Boca Raton :   CRC Press, Taylor & Francis Group,   c2019.  
형태사항
xiii, 283 p. : ill. ; 25 cm.
ISBN
9781138369856 (hardback : alk. paper)
서지주기
Includes bibliographical references and index.
일반주제명
Stochastic differential equations. Mathematical models. Stochastic processes. Laplace transformation. R (Computer program language).
000 00000cam u2200205 a 4500
001 000046001425
005 20191011103430
008 191007s2019 flua b 001 0 eng d
010 ▼a 2018047838
020 ▼a 9781138369856 (hardback : alk. paper)
020 ▼z 9780429031892 (ebook)
035 ▼a (KERIS)REF000018834761
040 ▼a DLC ▼b eng ▼e rda ▼c DLC ▼d 211009
050 0 0 ▼a QA274.23 ▼b .A38 2019
082 0 0 ▼a 519.2/2 ▼2 23
084 ▼a 519.22 ▼2 DDCK
090 ▼a 519.22 ▼b A244
245 0 0 ▼a Advanced spatial modeling with stochastic partial differential equations using R and INLA / ▼c E.T. Krainski ... [et al.].
246 3 ▼a Advanced spatial modeling with stochastic partial differential equations using R and integrated nested Laplace approximation
260 ▼a Boca Raton : ▼b CRC Press, Taylor & Francis Group, ▼c c2019.
300 ▼a xiii, 283 p. : ▼b ill. ; ▼c 25 cm.
504 ▼a Includes bibliographical references and index.
650 0 ▼a Stochastic differential equations.
650 0 ▼a Mathematical models.
650 0 ▼a Stochastic processes.
650 0 ▼a Laplace transformation.
650 0 ▼a R (Computer program language).
700 1 ▼a Krainski, E. T. ▼q (Elias T.).
945 ▼a KLPA

소장정보

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 중앙도서관/서고7층/ 청구기호 519.22 A244 등록번호 111815872 도서상태 대출가능 반납예정일 예약 서비스 B M

컨텐츠정보

목차

Preamble

What this book is and isn’t

  1. The Integrated Nested Laplace Approximation and the R-INLA package
  2. Introduction

    The INLA method

    A simple example

    Additional arguments and control options

    Manipulating the posterior marginals

    Advanced features

  3. Introduction to spatial modeling
  4. Introduction

    The SPDE approach

    A toy example

    Projection of the random field

    Prediction

    Triangulation details and examples

    Tools for mesh assessment

    Non-Gaussian response: Precipitation in Parana

  5. More than one likelihood
  6. Coregionalization model

    Joint modeling: Measurement error model

    Copying part of or the entire linear predictor

  7. Point processes and preferential sampling
  8. Introduction

    Including a covariate in the log-Gaussian Cox process

    Geostatistical inference under preferential sampling

  9. Spatial non-stationarity
  10. Explanatory variables in the covariance

    The Barrier model

    Barrier model for noise data in Albacete (Spain)

  11. Risk assessment using non-standard likelihoods
  12. Survival analysis

    Models for extremes

  13. Space-time models
  14. Discrete time domain

    Continuous time domain

    Lowering the resolution of a spatio-temporal model

    Conditional simulation: Combining two meshes

  15. Space-time applications

Space-time coregionalization model

Dynamic regression example

Space-time point process: Burkitt example

Large point process dataset

Accumulated rainfall: Hurdle Gamma model

List of symbols and notation

Packages used in the book


정보제공 : Aladin

관련분야 신착자료