![Exploring the Riemann zeta function [electronic resource] : 190 years from Riemann's birth](https://image.aladin.co.kr/product/10875/87/cover/3319599682_2.jpg)
000 | 00000cam u2200205 a 4500 | |
001 | 000045990096 | |
005 | 20190731140508 | |
006 | m d | |
007 | cr | |
008 | 190708s2017 sz a ob 000 0 eng d | |
020 | ▼a 9783319599687 | |
020 | ▼a 9783319599694 (e-book) | |
040 | ▼a 211009 ▼c 211009 ▼d 211009 | |
050 | 4 | ▼a QA241-247.5 |
082 | 0 4 | ▼a 512.7 ▼2 23 |
084 | ▼a 512.7 ▼2 DDCK | |
090 | ▼a 512.7 | |
245 | 0 0 | ▼a Exploring the Riemann zeta function ▼h [electronic resource] : ▼b 190 years from Riemann's birth / ▼c Hugh Montgomery, Ashkan Nikeghbali, Michael Th. Rassias, editors. |
260 | ▼a Cham : ▼b Springer, ▼c c 2017. | |
300 | ▼a 1 online resource (x, 298 p.) : ▼b ill. | |
500 | ▼a Title from e-Book title page. | |
504 | ▼a Includes bibliographical references. | |
505 | 0 | ▼a Preface (Dyson) -- 1. An introduction to Riemann's life, his mathematics, and his work on the zeta function (R. Baker) -- 2. Ramanujan's formula for zeta (2n+1) (B.C. Berndt, A. Straub) -- 3. Towards a fractal cohomology: Spectra of Polya-Hilbert operators, regularized determinants, and Riemann zeros (T. Cobler, M.L. Lapidus) -- The Temptation of the Exceptional Characters (J.B. Friedlander, H. Iwaniec) -- 4. The Temptation of the Exceptional Characters (J.B. Friedlander, H. Iwaniec) -- 5. Arthur's truncated Eisenstein series for SL(2,Z) and the Riemann Zeta Function, A Survey (D. Goldfield) -- 6. On a Cubic moment of Hardy's function with a shift (A. Ivic) -- 7. Some analogues of pair correlation of Zeta Zeros (Y. Karabulut, C.Y. Yıldırım) -- 8. Bagchi's Theorem for families of automorphic forms (E. Kowalski) -- 9. The Liouville function and the Riemann hypothesis (M.J. Mossinghoff, T.S. Trudgian) -- 10. Explorations in the theory of partition zeta functions (K. Ono, L. Rolen, R. Schneider) -- 11. Reading Riemann (S.J. Patterson) -- 12. A Taniyama product for the Riemann zeta function (D.E. Rohrlichłł). |
520 | ▼a This book is concerned with the Riemann Zeta Function, its generalizations, and various applications to several scientific disciplines, including Analytic Number Theory, Harmonic Analysis, Complex Analysis and Probability Theory. Eminent experts in the field illustrate both old and new results towards the solution of long-standing problems and include key historical remarks. Offering a unified, self-contained treatment of broad and deep areas of research, this book will be an excellent tool for researchers and graduate students working in Mathematics, Mathematical Physics, Engineering and Cryptography. | |
530 | ▼a Issued also as a book. | |
538 | ▼a Mode of access: World Wide Web. | |
600 | 1 0 | ▼a Reimann, Bernhard, ▼d 1826-1866. |
650 | 0 | ▼a Mathematics. |
650 | 0 | ▼a Riemann hypothesis. |
650 | 0 | ▼a Functions, Zeta. |
650 | 0 | ▼a Difference equations. |
650 | 0 | ▼a Functional equations. |
650 | 0 | ▼a Ergodic theory. |
650 | 0 | ▼a Functions of complex variables. |
700 | 1 | ▼a Montgomery, Hugh. |
700 | 1 | ▼a Nikeghbali, Ashkan. |
700 | 1 | ▼a Rassias, Michael Th. |
856 | 4 0 | ▼u https://oca.korea.ac.kr/link.n2s?url=https://doi.org/10.1007/978-3-319-59969-4 |
945 | ▼a KLPA | |
991 | ▼a E-Book(소장) |
소장정보
No. | 소장처 | 청구기호 | 등록번호 | 도서상태 | 반납예정일 | 예약 | 서비스 |
---|---|---|---|---|---|---|---|
No. 1 | 소장처 중앙도서관/e-Book 컬렉션/ | 청구기호 CR 512.7 | 등록번호 E14015638 | 도서상태 대출불가(열람가능) | 반납예정일 | 예약 | 서비스 |
컨텐츠정보
목차
Preface (Dyson) 1. An introduction to Riemann''s life, his mathematics, and his work on the zeta function (R. Baker) 2. Ramanujan''s formula for zeta (2n+1) (B.C. Berndt, A. Straub) 3. Towards a fractal cohomology: Spectra of Polya-Hilbert operators, regularized determinants, and Riemann zeros (T. Cobler, M.L. Lapidus) The Temptation of the Exceptional Characters (J.B. Friedlander, H. Iwaniec) 4. The Temptation of the Exceptional Characters (J.B. Friedlander, H. Iwaniec) 5. Arthur''s truncated Eisenstein series for SL(2,Z) and the Riemann Zeta Function, A Survey (D. Goldfield) 6. On a Cubic moment of Hardy''s function with a shift (A. Ivic) 7. Some analogues of pair correlation of Zeta Zeros (Y. Karabulut, C.Y. Yıldırım) 8. Bagchi''s Theorem for families of automorphic forms (E. Kowalski) 9. The Liouville function and the Riemann hypothesis (M.J. Mossinghoff, T.S. Trudgian) 10. Explorations in the theory of partition zeta functions (K. Ono, L. Rolen, R. Schneider) 11. Reading Riemann (S.J. Patterson) 12. A Taniyama product for the Riemann zeta function (D.E. Rohrlichłł).