HOME > Detail View

Detail View

Semi-supervised learning for multi-label image classification with multiple category label predictors

Semi-supervised learning for multi-label image classification with multiple category label predictors

Material type
학위논문
Personal Author
한수현 韓守鉉
Title Statement
Semi-supervised learning for multi-label image classification with multiple category label predictors / Soo-hyun Han
Publication, Distribution, etc
Seoul :   Graduate School, Korea Unversity,   2019  
Physical Medium
v, 29장 : 천연색삽화, 도표 ; 26 cm
기타형태 저록
Semi-Supervised Learning for Multi-Label Image Classification with Multiple Category Label Predictors   (DCOLL211009)000000083459  
학위논문주기
학위논문(석사)-- 고려대학교 대학원: 컴퓨터·전파통신공학과, 2019. 2
학과코드
0510   6D36   1094  
General Note
지도교수: 이성환  
Bibliography, Etc. Note
참고문헌: 장 24-29
이용가능한 다른형태자료
PDF 파일로도 이용가능;   Requires PDF file reader(application/pdf)  
비통제주제어
multi label image classification,,
000 00000nam c2200205 c 4500
001 000045978863
005 20190416162923
007 ta
008 181227s2019 ulkad bmAC 000c eng
040 ▼a 211009 ▼c 211009 ▼d 211009
041 0 ▼a eng ▼b kor
085 0 ▼a 0510 ▼2 KDCP
090 ▼a 0510 ▼b 6D36 ▼c 1094
100 1 ▼a 한수현 ▼g 韓守鉉
245 1 0 ▼a Semi-supervised learning for multi-label image classification with multiple category label predictors / ▼d Soo-hyun Han
260 ▼a Seoul : ▼b Graduate School, Korea Unversity, ▼c 2019
300 ▼a v, 29장 : ▼b 천연색삽화, 도표 ; ▼c 26 cm
500 ▼a 지도교수: 이성환
502 0 ▼a 학위논문(석사)-- ▼b 고려대학교 대학원: ▼c 컴퓨터·전파통신공학과, ▼d 2019. 2
504 ▼a 참고문헌: 장 24-29
530 ▼a PDF 파일로도 이용가능; ▼c Requires PDF file reader(application/pdf)
653 ▼a multi label image classification
776 0 ▼t Semi-Supervised Learning for Multi-Label Image Classification with Multiple Category Label Predictors ▼w (DCOLL211009)000000083459
900 1 0 ▼a Han, Soo-hyun, ▼e
900 1 0 ▼a 이성환 ▼g 李晟瑍, ▼e 지도교수
945 ▼a KLPA

Electronic Information

No. Title Service
1
Semi-supervised learning for multi-label image classification with multiple category label predictors (31회 열람)
View PDF Abstract Table of Contents

Holdings Information

No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Science & Engineering Library/Stacks(Thesis)/ Call Number 0510 6D36 1094 Accession No. 123060851 Availability Available Due Date Make a Reservation Service B M
No. 2 Location Science & Engineering Library/Stacks(Thesis)/ Call Number 0510 6D36 1094 Accession No. 123060852 Availability Available Due Date Make a Reservation Service B M

Contents information

Abstract

In this paper, we focus on learning multi label image classifier using only single label image dataset. Because a multi-label dataset requires annotation of all objects and concepts present in the image, it is time-consuming and effort-consuming to create a dataset, and most datasets that are readily available in real life are mostly single-label datasets. In this paper, we describe how to learn the Convolutional Neural Network (CNN) model using only single-labeled images, without creating or retrieving direct multiple label data.
We propose a Multiple Category Label Predictor (MCLP) to predict multiple labels from a single label image set in order to learn CNN as a multi-label prediction model with a single label image set alone. MCLP divides a set of single-label images into N categories, and then learns each category independently. The Category Label Predictor predicts the label of each category, and eventually performs the multi-label image classifier learning using the labels with high probability in all Category Label Predictors. 
We also propose a new loss function for learning of a multi-label image classifier using a single-label dataset as proposed. We conducted our experiments using our LG Image Dataset to evaluate the proposed method.

Table of Contents

1. Introduction 1
2. Related Work 3
3. Method 4
3.1. Convolutional Neural Network 5
3.1.1. MobileNetV2 5
3.1.1.1. Depthwise Separable Convolution 6
3.1.1.2. Hyper Parameters : Width & Resolution Multiplier 8
3.2. Model Architecture 9
3.3. Inference 11
3.4. Loss Function 12
4. Experiments 14
4.1. Dataset 14
4.2. MCLP’s Hyper Parameters 15
4.3. Main CNN Model’s Hyper Parameters 15
4.4. Result 16
5. Conclusion 24

New Arrivals Books in Related Fields