HOME > 상세정보

상세정보

Semi-supervised learning for multi-label image classification with multiple category label predictors

Semi-supervised learning for multi-label image classification with multiple category label predictors

자료유형
학위논문
개인저자
한수현 韓守鉉
서명 / 저자사항
Semi-supervised learning for multi-label image classification with multiple category label predictors / Soo-hyun Han
발행사항
Seoul :   Graduate School, Korea Unversity,   2019  
형태사항
v, 29장 : 천연색삽화, 도표 ; 26 cm
기타형태 저록
Semi-Supervised Learning for Multi-Label Image Classification with Multiple Category Label Predictors   (DCOLL211009)000000083459  
학위논문주기
학위논문(석사)-- 고려대학교 대학원, 컴퓨터·전파통신공학과, 2019. 2
학과코드
0510   6D36   1094  
일반주기
지도교수: 이성환  
서지주기
참고문헌: 장 24-29
이용가능한 다른형태자료
PDF 파일로도 이용가능;   Requires PDF file reader(application/pdf)  
비통제주제어
multi label image classification,,
000 00000nam c2200205 c 4500
001 000045978863
005 20230526133427
007 ta
008 181227s2019 ulkad bmAC 000c eng
040 ▼a 211009 ▼c 211009 ▼d 211009
041 0 ▼a eng ▼b kor
085 0 ▼a 0510 ▼2 KDCP
090 ▼a 0510 ▼b 6D36 ▼c 1094
100 1 ▼a 한수현 ▼g 韓守鉉
245 1 0 ▼a Semi-supervised learning for multi-label image classification with multiple category label predictors / ▼d Soo-hyun Han
260 ▼a Seoul : ▼b Graduate School, Korea Unversity, ▼c 2019
300 ▼a v, 29장 : ▼b 천연색삽화, 도표 ; ▼c 26 cm
500 ▼a 지도교수: 이성환
502 0 ▼a 학위논문(석사)-- ▼b 고려대학교 대학원, ▼c 컴퓨터·전파통신공학과, ▼d 2019. 2
504 ▼a 참고문헌: 장 24-29
530 ▼a PDF 파일로도 이용가능; ▼c Requires PDF file reader(application/pdf)
653 ▼a multi label image classification
776 0 ▼t Semi-Supervised Learning for Multi-Label Image Classification with Multiple Category Label Predictors ▼w (DCOLL211009)000000083459
900 1 0 ▼a Han, Soo-hyun, ▼e
900 1 0 ▼a 이성환, ▼g 李晟瑍, ▼d 1962-, ▼e 지도교수 ▼0 AUTH(211009)151678
945 ▼a KLPA

전자정보

No. 원문명 서비스
1
Semi-supervised learning for multi-label image classification with multiple category label predictors (33회 열람)
PDF 초록 목차

소장정보

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/학위논문서고/ 청구기호 0510 6D36 1094 등록번호 123060851 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 2 소장처 과학도서관/학위논문서고/ 청구기호 0510 6D36 1094 등록번호 123060852 도서상태 대출가능 반납예정일 예약 서비스 B M

컨텐츠정보

초록

In this paper, we focus on learning multi label image classifier using only single label image dataset. Because a multi-label dataset requires annotation of all objects and concepts present in the image, it is time-consuming and effort-consuming to create a dataset, and most datasets that are readily available in real life are mostly single-label datasets. In this paper, we describe how to learn the Convolutional Neural Network (CNN) model using only single-labeled images, without creating or retrieving direct multiple label data.
We propose a Multiple Category Label Predictor (MCLP) to predict multiple labels from a single label image set in order to learn CNN as a multi-label prediction model with a single label image set alone. MCLP divides a set of single-label images into N categories, and then learns each category independently. The Category Label Predictor predicts the label of each category, and eventually performs the multi-label image classifier learning using the labels with high probability in all Category Label Predictors. 
We also propose a new loss function for learning of a multi-label image classifier using a single-label dataset as proposed. We conducted our experiments using our LG Image Dataset to evaluate the proposed method.

목차

1. Introduction 1
2. Related Work 3
3. Method 4
3.1. Convolutional Neural Network 5
3.1.1. MobileNetV2 5
3.1.1.1. Depthwise Separable Convolution 6
3.1.1.2. Hyper Parameters : Width & Resolution Multiplier 8
3.2. Model Architecture 9
3.3. Inference 11
3.4. Loss Function 12
4. Experiments 14
4.1. Dataset 14
4.2. MCLP’s Hyper Parameters 15
4.3. Main CNN Model’s Hyper Parameters 15
4.4. Result 16
5. Conclusion 24

관련분야 신착자료