HOME > 상세정보

상세정보

텐서플로로 배우는 딥러닝 (21회 대출)

자료유형
단행본
개인저자
솔라리스
서명 / 저자사항
텐서플로로 배우는 딥러닝 / 솔라리스 지음
발행사항
서울 :   영진닷컴,   2018   (2019 2쇄)  
형태사항
414 p. : 천연색삽화, 도표 ; 23 cm
총서사항
Youngjin's book ;5839
ISBN
9788931458398
일반주기
딥러닝 기초 이론부터 ANN, 오토인코터, CNN, RNN, GAN, FCN, DQN, Image Captioning 최신 모델 구현까지  
서지주기
참고문헌: p. 414
000 00000cam c2200205 c 4500
001 000045973469
005 20200108134007
007 ta
008 190228s2018 ulkad b 000c kor
020 ▼a 9788931458398 ▼g 93000
035 ▼a (KERIS)BIB000014975617
040 ▼a 211040 ▼c 211040 ▼d 211009
082 0 4 ▼a 006.31 ▼2 23
085 ▼a 006.31 ▼2 DDCK
090 ▼a 006.31 ▼b 2018z38
100 0 ▼a 솔라리스
245 1 0 ▼a 텐서플로로 배우는 딥러닝 / ▼d 솔라리스 지음
246 3 0 ▼a 딥러닝
260 ▼a 서울 : ▼b 영진닷컴, ▼c 2018 ▼g (2019 2쇄)
300 ▼a 414 p. : ▼b 천연색삽화, 도표 ; ▼c 23 cm
440 0 0 ▼a Youngjin's book ; ▼v 5839
500 ▼a 딥러닝 기초 이론부터 ANN, 오토인코터, CNN, RNN, GAN, FCN, DQN, Image Captioning 최신 모델 구현까지
504 ▼a 참고문헌: p. 414
900 0 0 ▼a Solaris, ▼e

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/Sci-Info(1층서고)/ 청구기호 006.31 2018z38 등록번호 121251786 도서상태 간편대출신청중 반납예정일 예약 서비스 M
No. 2 소장처 과학도서관/Sci-Info(1층서고)/ 청구기호 006.31 2018z38 등록번호 521004802 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 3 소장처 세종학술정보원/과학기술실/ 청구기호 006.31 2018z38 등록번호 151344937 도서상태 대출가능 반납예정일 예약 서비스
No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/Sci-Info(1층서고)/ 청구기호 006.31 2018z38 등록번호 121251786 도서상태 간편대출신청중 반납예정일 예약 서비스 M
No. 2 소장처 과학도서관/Sci-Info(1층서고)/ 청구기호 006.31 2018z38 등록번호 521004802 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 세종학술정보원/과학기술실/ 청구기호 006.31 2018z38 등록번호 151344937 도서상태 대출가능 반납예정일 예약 서비스

컨텐츠정보

책소개

딥러닝 기법의 이론적 배경이 되는 기초적인 수학적 이론들을 자세하게 소개하고, 딥러닝 기초 모델들(ANN, 오토인코더, CNN, RNN)의 정확한 이해를 위해 텐서플로 예제 코드와 함께 설명한다. 또한, 딥러닝 모델들을 다양한 문제에 적용하고 실제 문제에 응용하는 방법을 소개한다.

딥러닝 기초 이론부터 ANN, 오토인코더, CNN, RNN, GAN, FCN, DQN, 이미지 캡셔닝 최신 모델 구현까지

이 책에서는 딥러닝 기법의 이론적 배경이 되는 기초적인 수학적 이론들을 자세하게 소개하고, 딥러닝 기초 모델들(ANN, 오토인코더, CNN, RNN)의 정확한 이해를 위해 텐서플로 예제 코드와 함께 설명합니다. 또한, 딥러닝 모델들을 다양한 문제에 적용하고 실제 문제에 응용하는 방법을 소개합니다.

책의 초반에는 선형 대수, 확률 통계, 최적화 이론과 같은 수학적 이론을 설명하고, 딥러닝 알고리즘의 기본 구조인 ANN, 오토인코더, CNN, RNN을 다룹니다. 중반에는 앞에서 배운 ANN, CNN, RNN 구조를 이미지 캡셔닝, Semantic Image Segmentation 문제에 어떻게 응용하는지를 설명합니다. 책의 후반에는 최근에 인기 있는 주제인 생성 모델과 강화 학습의 개념을 살펴보고, 파인 튜닝과 사전 학습된 모델을 이용해서 실제 문제를 해결하는 방법을 배웁니다. 1권의 책으로 딥러닝 기초 이론부터 텐서플로 라이브러리를 이용한 실제 구현까지 모두 파악할 수 있습니다.


책에 등장하는 예제 파일은 다음 주소에서 확인하시기 바랍니다.
https://github.com/solaris33/deep-learning-tensorflow-book-code


정보제공 : Aladin

저자소개

솔라리스(지은이)

서울대학교 인공지능 및 컴퓨터 비전 연구실에서 석사학위를 받았습니다. 텐서플로와 인공지능, 머신러닝, 딥러닝을 관련 내용을 포스팅하는 “솔라리스의 인공지능 연구실”(solarisailab.com)이라는 블로그를 운영 중입니다.

정보제공 : Aladin

목차

1. 인공지능, 머신러닝, 딥러닝 소개
1.1 딥러닝 알고리즘의 등장배경
1.2 지도 학습
1.3 비지도 학습
1.4 강화 학습
1.5 정리

2. 텐서플로 소개
2.1 텐서플로 설치 및 책에서 사용하는 소스 코드 다운로드
2.1.1 텐서플로 소개
2.1.2 텐서플로 설치
2.1.3 책에서 사용하는 소스 코드 다운로드
2.2 딥러닝, 텐서플로 응용 분야
2.2.1 컴퓨터 비전
2.2.2 자연어 처리
2.2.3 음성 인식
2.2.4 게임
2.2.5 생성 모델
2.3 텐서플로 추상화 라이브러리들
2.3.1 케라스
2.3.2 TF-Slim
2.3.3 Sonnet
2.4 정리

3. 텐서플로 기초와 텐서보드
3.1 텐서플로 기초 - 그래프 생성과 그래프 실행
3.2 플레이스홀더
3.3 선형회귀 및 경사하강법 알고리즘
3.3.1 머신러닝의 기본 프로세스 - 가설 정의, 손실 함수 정의, 최적화 정의
3.3.2 선형 회귀 알고리즘 구현 및 변수
3.4 텐서보드를 이용한 그래프 시각화
3.5 정리

4. 머신러닝 기초 이론들
4.1 Batch Gradient Descent, Mini-Batch Gradient Descent, Stochastic Gradient Descent
4.2 Training Data, Validation Data, Test Data 및 오버피팅
4.3 소프트맥스 회귀
4.3.1 소프트맥스 회귀
4.3.2 크로스 엔트로피 손실 함수
4.3.3 MNIST 데이터셋
4.3.4 One-hot Encoding
4.4 소프트맥스 회귀를 이용한 MNIST 숫자 분류기 구현
4.4.1 mnist_classification_using_softmax_regression.py
4.4.2 tf_nn_sparse_softmax_cross_entropy_with_logits_example.py
4.5 정리

5. 인공신경망(ANN)
5.1 인공신경망의 등장 배경
5.2 퍼셉트론
5.3 다층퍼셉트론 MLP
5.4 오류역전파 알고리즘
5.5 ANN을 이용한 MNIST 숫자 분류기 구현
5.6 정리

6. 오토인코더(AutoEncoder)
6.1 오토인코더의 개념
6.2 오토인코더를 이용한 MNIST 데이터 재구축
6.3 오토인코더와 소프트맥스 분류기를 이용한 MNIST 분류기 구현
6.3.1 파인 튜닝과 전이 학습
6.3.2 오토인코더와 소프트맥스 분류기를 이용한 MNIST 숫자 분류기 구현
6.4 정리

7. 컨볼루션 신경망(CNN)
7.1 컨볼루션 신경망의 개념 - 컨볼루션, 풀링
7.2 MNIST 숫자 분류를 위한 CNN 분류기 구현
7.3 CNN을 이용한 CIFAR-10 이미지 분류기 구현
7.3.1 CIFAR-10 데이터셋
7.3.2 드롭아웃
7.3.3 CNN을 이용한 CIFAR-10 이미지 분류기 구현
7.4 대표적인 CNN 모델들 - AlexNet, VGGNet, GoogLeNet, ResNet
7.4.1 AlexNet
7.4.2 VGGNet
7.4.3 GoogLeNet(Inception v1)
7.4.4 ResNet
7.5 tf.train.Saver API를 이용해서 모델과 파라미터를 저장하고 불러오기
7.6 정리

8. 순환신경망(RNN)
8.1 순환신경망
8.2 LSTM(장/단기 기억 네트워크)와 경사도 사라짐 문제
8.3 GRU
8.4 임베딩
8.4.1 임베딩의개념
8.4.2 tf.nn.embedding_lookup을 이용한 임베딩 구현
8.5 경사도 증가 문제와 경사도 자르기
8.6 Char-RNN
8.6.1 Char-RNN의 개념
8.6.2 텐서플로를 이용한 Char-RNN 구현
8.6.2.1 train_and_sampling.py
8.6.2.2 utils.py
8.7 정리

9. 이미지 캡셔닝(Image Captioning)
9.1 이미지 캡셔닝 문제 소개
9.2 이미지 캡셔닝 데이터셋 - MS COCO
9.3 이미지 캡셔닝 구현 - im2txt
9.4 im2txt 코드 구조에 대한 설명 및 코드 실행 방법
9.4.1 train.py
9.4.2 show_and_tell_model.py
9.4.3 run_inference.py
9.5 정리

10. Semantic Image Segmentation
10.1 Semantic Image Segmentation 개념
10.2 FCN
10.3 Semantic Image Segmentation을 위한 데이터셋 - MIT Scene Parsing
10.4 FCN을 이용한 Semantic Image Segmentation 구현 - FCN.tensorflow
10.4.1 FCN.py
10.4.2 TensorflowUtils.py
10.4.3 read_MITSceneParsingData.py
10.4.4 BatchDatsetReader.py
10.5 정리

11. 생성 모델 - GAN
11.1 생성 모델의 개념
11.2 GAN의 개념
11.3 GAN을 이용한 MNIST 데이터 생성
11.4 정리

12. 강화 학습(Reinforcement Learning)
12.1 강화 학습의 기본 개념과 MDP
12.1.1 상태 가치 함수
12.1.2 행동 가치 함수
12.2 Q-Learning
12.2.1 Q-Table과 Q-Networks
12.2.2 ∈-Greedy
12.3 DQN
12.4 DQN을 이용한 게임 에이전트 구현 - CatchGame
12.4.1 train_catch_game.py
12.4.2 play_catch_game.ipynb
12.5 정리

13. 파인 튜닝과 사전 학습된 모델을 이용한 실제 문제 해결
13.1 파인 튜닝 및 전이 학습 기법 리뷰
13.2 Inception v3 Retraining을 이용한 나만의 분류기
13.2.1 Inception v3 모델
13.2.2 inceptionv3_retrain.py - 나만의 데이터셋으로 파인 튜닝
13.2.3 inceptionv3_retrain.py
13.2.4 inceptionv3_inference.py
13.3 사전 학습된 모델을 이용한 물체 검출 수행
13.3.1 물체 검출의 개념
13.3.2 사전 학습된 Faster R-CNN 모델로 물체 검출 수행
13.3.3 faster_rcnn_inference.py
13.4 TensorFlow Hub
13.5 정리
13.6 더 공부할 것들

관련분야 신착자료

Baumer, Benjamin (2021)
데이터분석과인공지능활용편찬위원회 (2021)
Harrison, Matt (2021)