HOME > Detail View

Detail View

피처 엔지니어링, 제대로 시작하기 : 데이터에서 효과적으로 정보를 추출하는 원리와 기법 (Loan 21 times)

Material type
단행본
Personal Author
Zheng, Alice Casari, Amanda, 저 김우현, 역
Title Statement
피처 엔지니어링, 제대로 시작하기 : 데이터에서 효과적으로 정보를 추출하는 원리와 기법 / 앨리스 젱, 아만다 카사리 지음 ; 김우현 옮김
Publication, Distribution, etc
서울 :   에이콘,   2019  
Physical Medium
278 p. : 삽화 ; 24 cm
Series Statement
에이콘 데이터 과학 시리즈
Varied Title
Feature engineering for machine learning : principles and techniques for data scientists
ISBN
9791161752426 9788960771031 (Set)
General Note
부록: 선형 모델링과 선형대수 기초  
Bibliography, Etc. Note
참고문헌과 색인수록
Subject Added Entry-Topical Term
Machine learning Data mining
000 00000cam c2200205 c 4500
001 000045971299
005 20190216123829
007 ta
008 190216s2019 ulka b 001c kor
020 ▼a 9791161752426 ▼g 94000
020 1 ▼a 9788960771031 (Set)
035 ▼a (KERIS)BIB000015006676
040 ▼a 244009 ▼c 244009 ▼d 211009
041 1 ▼a kor ▼h eng
082 0 4 ▼a 006.31 ▼2 23
085 ▼a 006.31 ▼2 DDCK
090 ▼a 006.31 ▼b 2019z2
100 1 ▼a Zheng, Alice
245 1 0 ▼a 피처 엔지니어링, 제대로 시작하기 : ▼b 데이터에서 효과적으로 정보를 추출하는 원리와 기법 / ▼d 앨리스 젱, ▼e 아만다 카사리 지음 ; ▼e 김우현 옮김
246 1 9 ▼a Feature engineering for machine learning : ▼b principles and techniques for data scientists
260 ▼a 서울 : ▼b 에이콘, ▼c 2019
300 ▼a 278 p. : ▼b 삽화 ; ▼c 24 cm
440 0 0 ▼a 에이콘 데이터 과학 시리즈
500 ▼a 부록: 선형 모델링과 선형대수 기초
504 ▼a 참고문헌과 색인수록
650 0 ▼a Machine learning
650 0 ▼a Data mining
700 1 ▼a Casari, Amanda, ▼e
700 1 ▼a 김우현, ▼e
900 1 0 ▼a 젱, 앨리스, ▼e
900 1 0 ▼a 카사리, 아만다, ▼e
945 ▼a KLPA

No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Main Library/Monographs(3F)/ Call Number 006.31 2019z2 Accession No. 111815252 Availability Available Due Date Make a Reservation Service B M
No. 2 Location Science & Engineering Library/Sci-Info(Stacks1)/ Call Number 006.31 2019z2 Accession No. 121247930 Availability Available Due Date Make a Reservation Service B M
No. 3 Location Science & Engineering Library/Sci-Info(Stacks1)/ Call Number 006.31 2019z2 Accession No. 521004748 Availability In loan Due Date 2022-01-24 Make a Reservation Service M
No. 4 Location Sejong Academic Information Center/Science & Technology/ Call Number 006.31 2019z2 Accession No. 151346271 Availability Available Due Date Make a Reservation Service
No. 5 Location Sejong Academic Information Center/Science & Technology/ Call Number 006.31 2019z2 Accession No. 151349885 Availability Available Due Date Make a Reservation Service
No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Main Library/Monographs(3F)/ Call Number 006.31 2019z2 Accession No. 111815252 Availability Available Due Date Make a Reservation Service B M
No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Science & Engineering Library/Sci-Info(Stacks1)/ Call Number 006.31 2019z2 Accession No. 121247930 Availability Available Due Date Make a Reservation Service B M
No. 2 Location Science & Engineering Library/Sci-Info(Stacks1)/ Call Number 006.31 2019z2 Accession No. 521004748 Availability In loan Due Date 2022-01-24 Make a Reservation Service M
No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Sejong Academic Information Center/Science & Technology/ Call Number 006.31 2019z2 Accession No. 151346271 Availability Available Due Date Make a Reservation Service
No. 2 Location Sejong Academic Information Center/Science & Technology/ Call Number 006.31 2019z2 Accession No. 151349885 Availability Available Due Date Make a Reservation Service

Contents information

Book Introduction

머신 러닝의 결과는 데이터를 얼마나 잘 표현하는 피처를 추출하는가에 달려있다고 할 수 있다. 그러나 머신 러닝을 위한 다양한 알고리즘이나 도구에 대한 안내서는 많이 있는 것에 비해서 데이터의 피처를 어떻게 추출하고 사용할 도구에 맞게 변환하고 처리할 것인지 알려주는 안내서는 거의 없다.

이 책은 수치형 데이터, 범주형(카테고리) 데이터를 다루는 기법뿐만 아니라 텍스트, 이미지, 그리고 고차원 데이터에서 머신 러닝을 위해 좋은 피처를 추출하는 기법과 그 원리를 설명하고 실습을 통해 직관을 얻을 수 있도록 해준다.

★ 이 책에서 다루는 내용 ★

■ 숫자 데이터에 대한 피처 엔지니어링: 필터링, 비닝, 스케일링, 로그 변환, 거듭제곱 변환
■ 텍스트 처리 기법: BoW(Bag-of-Words), n-gram, 구문 탐색
■ 정보가 없는 피처를 제거하기 위한 빈도 기반 필터링 및 피처 스케일링
■ 피처 해싱과 빈 카운팅 등을 포함하는 범주형 변수의 인코딩 기법
■ 주성분 분석(PCA)을 이용한 모델 기반 피처 엔지니어링
■ 피처 생성 기법으로 k-평균을 사용하는 모델 스태킹(model stacking)의 개념
■ 딥러닝을 이용한 이미지 피처 추출

★ 이 책의 대상 독자 ★

이 책은 '모델과 벡터가 무엇인지'와 같은 기본적인 머신 러닝 지식을 전제로 한다. 물론 그와 관련된 간단한 설명이 제공될 것이다. 선형대수, 확률분포, 최적화 등에 대한 경험이 이 책을 이해하는 데 도움은 되지만 꼭 필요하지는 않다.

★ 이 책의 구성 ★

처음 몇 장은 데이터 과학과 머신 러닝을 시작하려는 사람들을 위한 다리를 제공하고자 천천히 시작한다.
1장에서는 데이터, 모델, 피처 등 머신 러닝 파이프라인의 기본 개념을 소개한다.
2장에서는 숫자 데이터를 위한 피처 엔지니어링의 기본인 필터링, 비닝(binning), 스케일링(scaling), 로그 변환(log transform), 거듭제곱 변환(power transform), 상호작용 피처(interaction feature) 등을 살펴본다.
3장에서는 자연어 텍스트를 위한 피처 엔지니어링을 다루며 BoW(Bag-of-Words), n-grams, 구문 탐색 등의 기법을 살펴본다.
4장에서는 피처 스케일링의 한 예로 tf-idf(term frequency-inverse document frequency)를 살펴보고 그 동작 원리를 설명한다.
5장에서는 피처 해싱(feature hashing)과 빈 카운팅(bin counting)을 포함해 범주형 변수에 대한 효율적인 인코딩 기법을 논의하면서 진행에 속도를 높인다.
주성분 분석(PCA, Principal Component Analysis)을 다루는 6장에 이르면 머신 러닝의 세계에 깊이 들어서게 된다.
7장에서는 피처 생성 기법으로서 k-평균을 다루며, 유용한 개념인 모델 스태킹(model stacking)을 설명한다.
8장에서는 텍스트 데이터에 비해 피처 추출이 훨씬 어려운 이미지에 대해 다룬다. 여기서는 이미지에 대한 최신 피처 추출 기법이라고 할 수 있는 SIFT와 HOG, 두 가지 수동 피처 추출 기법을 살펴볼 것이다.
9장에서는 학술 논문에 대한 추천 모델을 생성하는 예제를 통해 몇 가지 서로 다른 기법을 비교 분석한다.


Information Provided By: : Aladin

Author Introduction

앨리스 젱(지은이)

머신 러닝, 알고리즘, 플랫폼 개발 분야의 테크니컬 리더다. 현재 아마존 애드버타이징(Amazon Advertising) 사의 리서치 사이언스 매니저로 근무하고 있다. 그전에는 GraphLab/Dato/Turi에서 툴킷 개발 및 사용자 교육을 담당했고, 마이크로소프트 리서치(Microsoft Research) 사에서 머신 러닝 연구원으로 일했다. UC 버클리(Berkeley)에서 전기공학 및 컴퓨터과학으로 박사(PhD) 학위를, 컴퓨터과학 및 수학으로 학사(BA) 학위를 받았다.

아만다 카사리(지은이)

기술의 다음 지평을 탐구하고 그것이 가져올 영향을 가장 잘 보여줄 수 있는 리더이자 엔지니어다. 현재 Concur Labs의 수석 프로덕트 매니저 겸 데이터 과학자며 SAP Concur의 Concur Labs AI Research 팀의 공동 창립자다. 지난 16년 동안 데이터 과학, 머신 러닝, 복잡계 시스템, 로보틱스 등의 다양한 분야에서 핵심적인 역할을 수행했다. 미국 해군 사관학교(US Naval Academy)에서 제어 시스템 엔지니어링으로 학사(BS) 학위를, 버몬트 대학교(University of Vermont)에서 전기공학으로 석사(MS) 학위를 받았다.

김우현(옮긴이)

대학생 시절 선배와 함께 창업한 후 20년 가까이 소프트웨어 개발자로 살아오다가 인공지능 분야에서 인생 후반기를 위한 새로운 길을 만들어가고 있다. 현재 숙명여자대학교 나노/바이오 전산화학 연구센터에서 데이터 과학자로 일하고 있다. 옮긴 책으로는 『R 데이터 구조와 알고리즘』(에이콘, 2017), 『자바 데이터 사이언스 쿡북』(에이콘, 2018), 『피처 엔지니어링, 제대로 시작하기』(에이콘, 2018) 등이 있다.

Information Provided By: : Aladin

Table of Contents

1장. 머신 러닝 파이프라인 
__데이터 
__과제 
__모델 
__피처 
__모델 평가 

2장. 숫자를 위한 멋진 트릭 
__스칼라, 벡터, 공간 
__카운트 처리 
____바이너리 변환 
____양자화 또는 비닝 
__로그 변환 
____로그 변환의 역할 
____거듭제곱 변환: 로그 변환의 일반화 
__피처 스케일링 또는 정규화 
____min-max 스케일링 
____표준화(분산 스케일링) 
____ℓ2 정규화 
__상호작용 피처 
__피처 선택 
__요약 
__참고 문헌 

3장. 텍스트 데이터: 플래트닝, 필터링, 청킹 
__bag-of-x: 자연어 텍스트를 평면 벡터로 변환 
____BoW 
____bag-of-n-grams 
__정제된 피처를 위한 필터링 
____불용어 
____빈도 기반 필터링 
____어간 추출 
__의미의 단위: n-grams에서 구문까지 
____파싱과 토큰화 
____구문 탐색을 위한 연어 추출 
__요약 
__참고 문헌 

4장. 피처 스케일링의 효과: BoW에서 tf-idf로 
__tf-idf: BoW 비틀기 
__tf-idf 테스트 
____분류 데이터셋 생성 
____tf-idf 변환으로 BoW를 스케일링 
____로지스틱 회귀를 이용한 분류 
____일반화로 로지스틱 회귀 튜닝 
__심층 분석: 무슨 일이 일어나고 있는가? 
__요약 
__참고 문헌 

5장. 범주형 변수: 로봇닭 시대에 달걀 개수 세기 
__범주형 변수 인코딩 
____원-핫 인코딩 
____더미 코딩 
____이펙트 코딩 
____범주형 변수 인코딩의 장단점 
__대규모 범주형 변수 처리 
____피처 해싱 
____빈 카운팅 
__요약 
__참고 문헌 


6장. 차원 축소: PCA로 데이터 팬케이크 납작하게 만들기 
__직관 
__수식 유도 
____선형 투영법 
____분산과 경험적 분산 
____주성분: 첫 번째 식 
____주성분: 행렬-벡터식 
____주성분의 일반적인 해 
____피처 변환 
____PCA 구현 
__PCA의 활약 
__화이트닝과 ZCA 
__PCA의 고려 사항과 한계 
__사용 예 
__요약 
__참고 문헌 

7장. k-means 모델 스태킹을 통한 비선형 피처 생성 
__k-means 클러스터링 
__곡면 분할로서의 클러스터링 
__분류를 위한 k-means 피처 생성 
____조밀한 피처 생성 
__장단점과 몇 가지 사항들 
__요약 
__참고 문헌 

8장. 피처 생성 자동화: 이미지 피처 추출과 딥러닝 
__가장 단순한 이미지 피처(그리고 이것이 동작하지 않는 이유) 
__수동 피처 추출: SIFT와 HOG 
____이미지 그래디언트 
____그래디언트 오리엔테이션 히스토그램 
____SIFT 아키텍처 
__심층 신경망으로 이미지 피처 학습 
____완전 연결 계층 
____컨볼루션 계층 
____ReLU 변환 
____응답 정규화 계층 
____풀링 계층 
____AlexNet의 구조 
__요약 
__참고 문헌 

9장. 다시 피처로: 학술 논문 추천 시스템 구축 
__항목 기반 협업 필터링 
__첫 번째 단계: 데이터 가져오기, 정제하기, 피처 파싱하기 
____학술 논문 추천 시스템: 단순 접근법 
__두 번째 단계: 피처 엔지니어링과 더 똑똑한 모델 
____학술 논문 추천 시스템: 테이크 2 
__세 번째 단계: 추가 피처 = 추가 정보 
____학술 논문 추천 시스템: 테이크 3 
__요약 
__참고 문헌 

부록 A. 선형 모델링과 선형대수 기초 
__선형 분류 개관 
__행렬 분석 
____벡터에서 부분공간으로 
____특이값 분해 
____데이터 행렬의 기본적인 네 가지 부분공간 
__선형 시스템 풀이 
__참고 문헌

New Arrivals Books in Related Fields

National Academies of Sciences, Engineering, and Medicine (U.S.) (2020)
Cartwright, Hugh M. (2021)
한국소프트웨어기술인협회. 빅데이터전략연구소 (2021)