HOME > 상세정보

상세정보

DQN-based OpenCL workload partition for performance optimization

DQN-based OpenCL workload partition for performance optimization

자료유형
학위논문
개인저자
박상현 朴相炫
서명 / 저자사항
DQN-based OpenCL workload partition for performance optimization / Sanghyun Park
발행사항
Seoul :   Graduate School, Korea University,   2018  
형태사항
iv, 47장 : 삽화, 도표 ; 26 cm
기타형태 저록
DQN-based OpenCL Workload Partition for Performance Optimization   (DCOLL211009)000000081713  
학위논문주기
학위논문(석사)-- 고려대학교 대학원, 컴퓨터·전파통신공학과, 2018. 8
학과코드
0510   6D36   1088  
일반주기
지도교수: 서태원  
서지주기
참고문헌: 장 45-47
이용가능한 다른형태자료
PDF 파일로도 이용가능;   Requires PDF file reader(application/pdf)  
비통제주제어
OpenCL, Workload Partitioning, DQN,,
000 00000nam c2200205 c 4500
001 000045953628
005 20230706174817
007 ta
008 180625s2018 ulkad bmAC 000c eng
040 ▼a 211009 ▼c 211009 ▼d 211009
085 ▼a 0510 ▼2 KDCP
090 ▼a 0510 ▼b 6D36 ▼c 1088
100 ▼a 박상현 ▼g 朴相炫
245 1 0 ▼a DQN-based OpenCL workload partition for performance optimization / ▼d Sanghyun Park
246 1 1 ▼a 성능 최적화를 위한 DQN 기반의 OpenCL 워크로드 분할
260 ▼a Seoul : ▼b Graduate School, Korea University, ▼c 2018
300 ▼a iv, 47장 : ▼b 삽화, 도표 ; ▼c 26 cm
500 ▼a 지도교수: 서태원
502 0 ▼a 학위논문(석사)-- ▼b 고려대학교 대학원, ▼c 컴퓨터·전파통신공학과, ▼d 2018. 8
504 ▼a 참고문헌: 장 45-47
530 ▼a PDF 파일로도 이용가능; ▼c Requires PDF file reader(application/pdf)
653 ▼a OpenCL ▼a Workload Partitioning ▼a DQN
776 0 ▼t DQN-based OpenCL Workload Partition for Performance Optimization ▼w (DCOLL211009)000000081713
900 1 0 ▼a Park, Sang-hyun, ▼e
900 1 0 ▼a 서태원, ▼g 徐泰源, ▼d 1969-, ▼e 지도교수 ▼0 AUTH(211009)153243
945 ▼a KLPA

전자정보

No. 원문명 서비스
1
DQN-based OpenCL workload partition for performance optimization (34회 열람)
PDF 초록 목차

소장정보

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/학위논문서고/ 청구기호 0510 6D36 1088 등록번호 123059637 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 2 소장처 과학도서관/학위논문서고/ 청구기호 0510 6D36 1088 등록번호 123059638 도서상태 대출가능 반납예정일 예약 서비스 B M

컨텐츠정보

초록

This paper proposes a Deep Q Network (DQN)-based method for the workload partition problem in OpenCL. The DQN, a reinforcement learning algorithm, optimizes the workload partition for each PU by the self-training, based on the accumulated performance data on the computing environment. Our experiments reveal that the DQN-based partition provides the performance improvement by up to 62.2% and 6.9% in JPEG decoder, compared to the LuxMark-based and target-based partitions, respectively. The DQN is able to capture the low-level contention in slave devices such as caches and memory, and the communication bottleneck between devices, and reflect it to the workload partition ratio.

목차

1. Introduction 1
2. Related Works 4
3. Background 5
3.1 OpenCL 5
3.2 Deep Q Network 6
4. Workload Partition Optimization using DQN 8
4.1 Training Model for OpenCL Workload Partition 8
4.2 Training Algorithm 12
5. Experiments 15
5.1 Experiment Environment 15
5.2 LuxMark Based Partition (Baseline #1) 22
5.3 Target-Based Partition (Baseline #2) 22
5.4 DQN-based Partition 24
5.5 Performance Comparison 26
5.6 Analysis 29
6. Conclusion 44
References 45