HOME > 상세정보

상세정보

(A) monolithic 3D integrated FPGA for convolutional neural network acceleration

(A) monolithic 3D integrated FPGA for convolutional neural network acceleration

자료유형
학위논문
개인저자
남상준 南相俊
서명 / 저자사항
(A) monolithic 3D integrated FPGA for convolutional neural network acceleration / 南相俊
발행사항
Seoul :   Graduate School, Korea University,   2018  
형태사항
v, 21장 : 도표 ; 26 cm
기타형태 저록
A Monolithic 3D Integrated FPGA for Convolutional Neural Network Acceleration   (DCOLL211009)000000081706  
학위논문주기
학위논문(석사)-- 고려대학교 대학원, 컴퓨터·전파통신공학과, 2018. 8
학과코드
0510   6D36   1087  
일반주기
지도교수: 정성우  
서지주기
참고문헌: 장 18-19
이용가능한 다른형태자료
PDF 파일로도 이용가능;   Requires PDF file reader(application/pdf)  
비통제주제어
Monolithic 3D, Convolutional Neural Network, Accelerator, FPGA, Performance,,
000 00000nam c2200205 c 4500
001 000045953547
005 20230712100132
007 ta
008 180629s2018 ulkd bmAC 000c eng
040 ▼a 211009 ▼c 211009 ▼d 211009
085 ▼a 0510 ▼2 KDCP
090 ▼a 0510 ▼b 6D36 ▼c 1087
100 1 ▼a 남상준 ▼g 南相俊
245 1 1 ▼a (A) monolithic 3D integrated FPGA for convolutional neural network acceleration / ▼d 南相俊
260 ▼a Seoul : ▼b Graduate School, Korea University, ▼c 2018
300 ▼a v, 21장 : ▼b 도표 ; ▼c 26 cm
500 ▼a 지도교수: 정성우
502 0 ▼a 학위논문(석사)-- ▼b 고려대학교 대학원, ▼c 컴퓨터·전파통신공학과, ▼d 2018. 8
504 ▼a 참고문헌: 장 18-19
530 ▼a PDF 파일로도 이용가능; ▼c Requires PDF file reader(application/pdf)
653 ▼a Monolithic 3D ▼a Convolutional Neural Network ▼a Accelerator ▼a FPGA ▼a Performance
776 0 ▼t A Monolithic 3D Integrated FPGA for Convolutional Neural Network Acceleration ▼w (DCOLL211009)000000081706
900 1 0 ▼a Nam, Sang Jun, ▼e
900 1 0 ▼a 정성우, ▼g 鄭盛宇, ▼d 1973-, ▼e 지도교수 ▼0 AUTH(211009)153279
945 ▼a KLPA

전자정보

No. 원문명 서비스
1
(A) monolithic 3D integrated FPGA for convolutional neural network acceleration (26회 열람)
PDF 초록 목차

소장정보

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/학위논문서고/ 청구기호 0510 6D36 1087 등록번호 123059631 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 2 소장처 과학도서관/학위논문서고/ 청구기호 0510 6D36 1087 등록번호 123059632 도서상태 대출가능 반납예정일 예약 서비스 B M

컨텐츠정보

초록

Monolithic 3D (M3D) integration has been recently introduced to overcome excessive 2D interconnect delay. Since M3D integration uses the extremely small size of monolithic inter-tier vias (MIVs), it is expected to significantly reduce 2D interconnect delay by replacing 2D interconnects with MIVs. In this paper, we propose an M3D integrated FPGA to improve the performance of convolutional neural network (CNN) accelerators, where the interconnect delay accounts for a considerable portion of the critical path delay for a processing element (PE). Our proposed M3D integrated FPGA reduces the footprint by partitioning the operators in PEs to multiple layers, which leads to significant interconnect delay reduction. Our study shows that our proposed M3D integrated FPGA reduces the 2D interconnect delay by up to 41.1%, which results in critical path delay reduction by up to 16.7% in a PE, compared to the conventional 2D integrated FPGA.

목차

Abstract i
Table of Contents ii
List of Figures iv
List of Tables v
1. Introduction 1
2. Background 3
2.1 Convolutional Neural Networks 3
2.2 Monolithic 3D Integration 5
3. M3D Integrated FPGA Based Processing Element for CNN Acceleration 7
4. Experimental Environment 12
5. Experimental Results 14
6. Conclusion 17
References 18
감사의 글 20

관련분야 신착자료