
000 | 00000cam u2200205 a 4500 | |
001 | 000045942800 | |
005 | 20180528112456 | |
008 | 180528s2014 maua b 001 0 eng d | |
010 | ▼a 2014007215 | |
020 | ▼a 9780262028134 (hardcover : alk. paper) | |
020 | ▼a 0262028131 (hardcover : alk. paper) | |
035 | ▼a (KERIS)REF000017589651 | |
040 | ▼a DLC ▼b eng ▼c DLC ▼e rda ▼d DLC ▼d 211009 | |
050 | 0 0 | ▼a Q175.32.M38 ▼b S65 2014 |
082 | 0 0 | ▼a 512/.62 ▼2 23 |
084 | ▼a 512.62 ▼2 DDCK | |
090 | ▼a 512.62 ▼b S761c | |
100 | 1 | ▼a Spivak, David I., ▼d 1978-. |
245 | 1 0 | ▼a Category theory for the sciences / ▼c David I. Spivak. |
260 | ▼a Cambridge, Massachusetts : ▼b The MIT Press, ▼c c2014. | |
300 | ▼a viii, 486 p. : ▼b ill. (some col.) ; ▼c 24 cm. | |
504 | ▼a Includes bibliographical references (p. 475-478) and index. | |
650 | 0 | ▼a Science ▼x Mathematical models. |
650 | 0 | ▼a Categories (Mathematics). |
945 | ▼a KLPA |
Holdings Information
No. | Location | Call Number | Accession No. | Availability | Due Date | Make a Reservation | Service |
---|---|---|---|---|---|---|---|
No. 1 | Location Science & Engineering Library/Sci-Info(Stacks2)/ | Call Number 512.62 S761c | Accession No. 121244724 | Availability In loan | Due Date 2022-09-13 | Make a Reservation Available for Reserve | Service |
Contents information
Table of Contents
Section Section Description Page Number 1 Introduction p. 1 1.1 A brief history of category theory p. 4 1.2 Intention of this book p. 5 1.3 What is requested from the student p. 7 1.4 Category theory references p. 7 2 The Category of Sets p. 9 2.1 Sets and functions p. 9 2.2 Commutative diagrams p. 23 2.3 Ologs p. 24 3 Fundamental Considerations in Set p. 41 3.1 Products and coproducts p. 41 3.2 Finite limits in Set p. 55 3.3 Finite colimits in Set p. 75 3.4 Other notions in Set p. 90 4 Categories and Functors, Without Admitting It p. 115 4.1 Monoids p. 116 4.2 Groups p. 140 4.3 Graphs p. 146 4.4 Orders p. 162 4.5 Databases: schemas and instances p. 184 5 Basic Category Theory p. 203 5.1 Categories and functors p. 203 5.2 Common categories and functors from pure math p. 239 5.3 Natural transformations p. 267 5.4 Categories and schemas are equivalent, Cat [$$$] Sch p. 306 6 Fundamental Considerations of Categories p. 315 6.1 Limits and colimits p. 315 6.2 Other notions in Cat p. 360 7 Categories at Work p. 375 7.1 Adjoint functors p. 375 7.2 Categories of functors p. 401 7.3 Monads p. 433 7.4 Operads p. 452 References p. 475 Index p. 479