HOME > Detail View

Detail View

Category theory for the sciences

Category theory for the sciences (Loan 2 times)

Material type
단행본
Personal Author
Spivak, David I., 1978-.
Title Statement
Category theory for the sciences / David I. Spivak.
Publication, Distribution, etc
Cambridge, Massachusetts :   The MIT Press,   c2014.  
Physical Medium
viii, 486 p. : ill. (some col.) ; 24 cm.
ISBN
9780262028134 (hardcover : alk. paper) 0262028131 (hardcover : alk. paper)
Bibliography, Etc. Note
Includes bibliographical references (p. 475-478) and index.
Subject Added Entry-Topical Term
Science --Mathematical models. Categories (Mathematics).
000 00000cam u2200205 a 4500
001 000045942800
005 20180528112456
008 180528s2014 maua b 001 0 eng d
010 ▼a 2014007215
020 ▼a 9780262028134 (hardcover : alk. paper)
020 ▼a 0262028131 (hardcover : alk. paper)
035 ▼a (KERIS)REF000017589651
040 ▼a DLC ▼b eng ▼c DLC ▼e rda ▼d DLC ▼d 211009
050 0 0 ▼a Q175.32.M38 ▼b S65 2014
082 0 0 ▼a 512/.62 ▼2 23
084 ▼a 512.62 ▼2 DDCK
090 ▼a 512.62 ▼b S761c
100 1 ▼a Spivak, David I., ▼d 1978-.
245 1 0 ▼a Category theory for the sciences / ▼c David I. Spivak.
260 ▼a Cambridge, Massachusetts : ▼b The MIT Press, ▼c c2014.
300 ▼a viii, 486 p. : ▼b ill. (some col.) ; ▼c 24 cm.
504 ▼a Includes bibliographical references (p. 475-478) and index.
650 0 ▼a Science ▼x Mathematical models.
650 0 ▼a Categories (Mathematics).
945 ▼a KLPA

Holdings Information

No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Science & Engineering Library/Sci-Info(Stacks2)/ Call Number 512.62 S761c Accession No. 121244724 Availability In loan Due Date 2022-09-13 Make a Reservation Available for Reserve R Service M

Contents information

Table of Contents

Section	Section Description	Page Number
1	Introduction	p. 1
1.1	    A brief history of category theory	p. 4
1.2	    Intention of this book	p. 5
1.3	    What is requested from the student	p. 7
1.4	    Category theory references	p. 7
2	The Category of Sets	p. 9
2.1	    Sets and functions	p. 9
2.2	    Commutative diagrams	p. 23
2.3	    Ologs	p. 24
3	Fundamental Considerations in Set	p. 41
3.1	    Products and coproducts	p. 41
3.2	    Finite limits in Set	p. 55
3.3	    Finite colimits in Set	p. 75
3.4	    Other notions in Set	p. 90
4	Categories and Functors, Without Admitting It	p. 115
4.1	    Monoids	p. 116
4.2	    Groups	p. 140
4.3	    Graphs	p. 146
4.4	    Orders	p. 162
4.5	    Databases: schemas and instances	p. 184
5	Basic Category Theory	p. 203
5.1	    Categories and functors	p. 203
5.2	    Common categories and functors from pure math	p. 239
5.3	    Natural transformations	p. 267
5.4	    Categories and schemas are equivalent, Cat [$$$] Sch	p. 306
6	Fundamental Considerations of Categories	p. 315
6.1	    Limits and colimits	p. 315
6.2	    Other notions in Cat	p. 360
7	Categories at Work	p. 375
7.1	    Adjoint functors	p. 375
7.2	    Categories of functors	p. 401
7.3	    Monads	p. 433
7.4	    Operads	p. 452
References	p. 475
Index	p. 479

New Arrivals Books in Related Fields