HOME > Detail View

Detail View

Deep neural models for pre-detecting anomalies from multivariate streaming data

Deep neural models for pre-detecting anomalies from multivariate streaming data

Material type
학위논문
Personal Author
김충겸 金忠謙
Title Statement
Deep neural models for pre-detecting anomalies from multivariate streaming data / Chunggyeom Kim
Publication, Distribution, etc
Seoul :   Graduate School, Korea University,   2018  
Physical Medium
iv, 25장 : 삽화, 도표 ; 26 cm
기타형태 저록
Deep neural models for pre-detecting anomalies from multivariate streaming data   (DCOLL211009)000000079346  
학위논문주기
학위논문(석사)-- 고려대학교 대학원, 컴퓨터·전파통신공학과, 2018. 2
학과코드
0510   6D36   1074  
General Note
지도교수: 강재우  
Bibliography, Etc. Note
참고문헌: 장 22-25
이용가능한 다른형태자료
PDF 파일로도 이용가능;   Requires PDF file reader(application/pdf)  
비통제주제어
Anomaly detection,,
000 00000nam c2200205 c 4500
001 000045932647
005 20230530103936
007 ta
008 171226s2018 ulkad bmAC 000c eng
040 ▼a 211009 ▼c 211009 ▼d 211009
085 0 ▼a 0510 ▼2 KDCP
090 ▼a 0510 ▼b 6D36 ▼c 1074
100 1 ▼a 김충겸 ▼g 金忠謙
245 1 0 ▼a Deep neural models for pre-detecting anomalies from multivariate streaming data / ▼d Chunggyeom Kim
246 1 1 ▼a 다변량 스트리밍 데이터에서 사전 이상 탐지를 위한 심층 신경 모델
260 ▼a Seoul : ▼b Graduate School, Korea University, ▼c 2018
300 ▼a iv, 25장 : ▼b 삽화, 도표 ; ▼c 26 cm
500 ▼a 지도교수: 강재우
502 0 ▼a 학위논문(석사)-- ▼b 고려대학교 대학원, ▼c 컴퓨터·전파통신공학과, ▼d 2018. 2
504 ▼a 참고문헌: 장 22-25
530 ▼a PDF 파일로도 이용가능; ▼c Requires PDF file reader(application/pdf)
653 ▼a Anomaly detection
776 0 ▼t Deep neural models for pre-detecting anomalies from multivariate streaming data ▼w (DCOLL211009)000000079346
900 1 0 ▼a Kim, Chung Gyeom, ▼e
900 1 0 ▼a 강재우, ▼g 姜在雨, ▼d 1969-, ▼e 지도교수 ▼0 AUTH(211009)151698
945 ▼a KLPA

Electronic Information

No. Title Service
1
Deep neural models for pre-detecting anomalies from multivariate streaming data (51회 열람)
View PDF Abstract Table of Contents

Holdings Information

No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Science & Engineering Library/Stacks(Thesis)/ Call Number 0510 6D36 1074 Accession No. 123058301 Availability Available Due Date Make a Reservation Service B M
No. 2 Location Science & Engineering Library/Stacks(Thesis)/ Call Number 0510 6D36 1074 Accession No. 123058302 Availability Available Due Date Make a Reservation Service B M

Contents information

Abstract

Anomaly detection in an industrial process is a crucial task for preventing unexpected economic loss. Among various signals, multivariate time series data has been one of the most difficult signals to analyze for detecting anomalies. 
Moreover, labels for anomalous signals are often unavailable in many fields. To tackle this problem, we present DeepNAP which is a deep neural anomaly pre-detection model based on recurrent neural networks. Without any annotated data, DeepNAP successfully learns to detect anomalies using partial reconstruction. Detecting anomalies in advance is essential for preventing catastrophic events. While previous studies focused mainly on capturing anomalies after they have occurred, DeepNAP is able to pre-detect anomalies. We evaluate DeepNAP and other baseline models on a real multivariate dataset generated from a semiconductor manufacturing fab. Compared with other baseline models, DeepNAP achieves the best performances with earlier anomaly detection.

Table of Contents

Abstract
Contents i
List of Figures iii
List of Tables iv
1 Introduction 1
2 Related Works 3
2.1 Time Series Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Anomaly Detection Using Neural Networks . . . . . . . . . . . . . . . . . 4
2.3 Anomaly Detection on Semiconductor Manufacturing Process . . . . . . . 5
3 Preliminary 6
3.1 Long Short-Term Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Sequence to Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Model Description 9
4.1 Prediction Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Detection Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Deep Neural Anomaly Pre-detection Model . . . . . . . . . . . . . . . . . 13
5 Experiments 14
5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Baselines & Proposed Models . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6 Conclusion 21
Bibliography 22