HOME > 상세정보

상세정보

기계 학습

자료유형
단행본
개인저자
서명 / 저자사항
기계 학습 = Machine learning / 오일석 지음
발행사항
서울 : 한빛아카데미, 2017 (2018 2쇄)
형태사항
664 p. : 삽화(일부천연색), 도표 ; 24 cm
ISBN
9791156641582
서지주기
참고문헌(p. 641-656)과 색인수록
000 00000cam c2200205 c 4500
001 000045925202
005 20181112134817
007 ta
008 180104s2017 ulkad b 001c kor
020 ▼a 9791156641582 ▼g 93000
035 ▼a (KERIS)BIB000014662181
040 ▼a 248002 ▼c 248002 ▼d 248002 ▼d 211009
082 0 4 ▼a 006.31 ▼2 23
085 ▼a 006.31 ▼2 DDCK
090 ▼a 006.31 ▼b 2017z21
100 1 ▼a 오일석 ▼0 AUTH(211009)130431
245 1 0 ▼a 기계 학습 = ▼x Machine learning / ▼d 오일석 지음
260 ▼a 서울 : ▼b 한빛아카데미, ▼c 2017 ▼g (2018 2쇄)
300 ▼a 664 p. : ▼b 삽화(일부천연색), 도표 ; ▼c 24 cm
504 ▼a 참고문헌(p. 641-656)과 색인수록
945 ▼a KLPA

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 중앙도서관/제2자료실(3층)/ 청구기호 006.31 2017z21 등록번호 111793235 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 2 소장처 중앙도서관/제2자료실(3층)/ 청구기호 006.31 2017z21 등록번호 511037311 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 3 소장처 과학도서관/Sci-Info(1층서고)/ 청구기호 006.31 2017z21 등록번호 121242873 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 4 소장처 과학도서관/Sci-Info(1층서고)/ 청구기호 006.31 2017z21 등록번호 121245495 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 5 소장처 세종학술정보원/과학기술실/ 청구기호 006.31 2017z21 등록번호 151338541 도서상태 대출중 반납예정일 2021-02-17 예약 서비스
No. 6 소장처 세종학술정보원/과학기술실/ 청구기호 006.31 2017z21 등록번호 151346999 도서상태 대출가능 반납예정일 예약 서비스
No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 중앙도서관/제2자료실(3층)/ 청구기호 006.31 2017z21 등록번호 111793235 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 2 소장처 중앙도서관/제2자료실(3층)/ 청구기호 006.31 2017z21 등록번호 511037311 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/Sci-Info(1층서고)/ 청구기호 006.31 2017z21 등록번호 121242873 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 2 소장처 과학도서관/Sci-Info(1층서고)/ 청구기호 006.31 2017z21 등록번호 121245495 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 세종학술정보원/과학기술실/ 청구기호 006.31 2017z21 등록번호 151338541 도서상태 대출중 반납예정일 2021-02-17 예약 서비스
No. 2 소장처 세종학술정보원/과학기술실/ 청구기호 006.31 2017z21 등록번호 151346999 도서상태 대출가능 반납예정일 예약 서비스

컨텐츠정보

책소개

기계 학습에 입문하려는 학생, 개발자, 연구원 모두를 대상으로 하는 책이다. 다양한 수준의 독자가 기계 학습에 흥미를 가지고 접근할 수 있도록 기계 학습의 원리와 응용을 폭넓게 다루었고, 특히 딥러닝을 깊이 있게 설명했다.

원시적인 학습 모델에서 출발하여 현대 학습 모델까지 역사적 맥락을 짚으며 설명했으며, 새로운 기법과 이전 기법을 대비하여 알고리즘에 대한 통찰력을 얻도록 구성했다. 또한 다양한 그림과 예제, 알고리즘을 함께 제시하여 보다 쉽게 수학을 접할 수 있도록 했고, 기승전결의 이야기 방식을 통해 독자의 호기심을 자극하여 지적 흥미를 끝까지 유지하도록 배려했다.

1. 기계 학습의 A부터 Z까지 폭넓게 다루고, 특히 딥러닝을 깊이 있게 설명한다.
2. 어렵고 방대한 주제이지만 친절하고 자세하게 설명해서 입문자를 배려한다.
3. 다양한 그림과 예제, 알고리즘을 함께 제시해서 독자의 이해력을 높인다.
4. 컴퓨터공학 전공자와 비전공자 모두 이 책을 활용할 수 있다.

한 권으로 꿰뚫는 기계 학습의 원리와 응용
기계 학습에 입문하려는 학생, 개발자, 연구원 모두를 대상으로 하는 책이다.
다양한 수준의 독자가 기계 학습에 흥미를 가지고 접근할 수 있도록 기계 학습의 원리와 응용을 폭넓게 다루었고, 특히 딥러닝을 깊이 있게 설명했다.
원시적인 학습 모델에서 출발하여 현대 학습 모델까지 역사적 맥락을 짚으며 설명했으며, 새로운 기법과 이전 기법을 대비하여 알고리즘에 대한 통찰력을 얻도록 구성했다.
또한 다양한 그림과 예제, 알고리즘을 함께 제시하여 보다 쉽게 수학을 접할 수 있도록 했고, 기승전결의 이야기 방식을 통해 독자의 호기심을 자극하여 지적 흥미를 끝까지 유지하도록 배려했다.


정보제공 : Aladin

저자소개

오일석(지은이)

전북대학교 컴퓨터공학부 교수로 재직 중입니다. 서울대학교 컴퓨터공학부를 졸업하고, KAIST 전산학과에서 박사학위를 받았으며 주요 연구 분야는 기계 학습, 컴퓨터 비전, 패턴인식입니다. 저서로는 한빛아카데미의 『R로 배우는 데이터 과학』, 『기계 학습』(대한민국학술원 2018년 우수학술도서), 『컴퓨터 비전』(대한민국학술원 2015년 우수학술도서)과 교보문고의 『패턴인식』(문화체육관광부 2009년 우수학술도서), 『C 프로그래밍과 스타일링』(2009년), 인피니티북스의 『세상을 여는 컴퓨터 이야기』(2020년)가 있고 역서로는 한빛아카데미의 『앱인벤터2』(2015년)가 있습니다.

정보제공 : Aladin

목차

Chapter 01 소개 
1.1 기계 학습이란 
1.2 특징 공간에 대한 이해 
1.3 데이터에 대한 이해 
1.4 간단한 기계 학습의 예 
1.5 모델 선택 
1.6 규제 
1.7 기계 학습 유형 
1.8 기계 학습의 과거와 현재, 미래 
연습문제 

Chapter 02 기계 학습과 수학 
2.1 선형대수 
2.2 확률과 통계 
2.3 최적화 
연습문제 

Chapter 03 다층 퍼셉트론 
3.1 신경망 기초 
3.2 퍼셉트론 
3.3 다층 퍼셉트론 
3.4 오류 역전파 알고리즘 
3.5 미니배치 스토캐스틱 경사 하강법 
3.6 다층 퍼셉트론에 의한 인식 
3.7 다층 퍼셉트론의 특성 
연습문제 

Chapter 04 딥러닝 기초 
4.1 딥러닝의 등장 
4.2 깊은 다층 퍼셉트론 
4.3 컨볼루션 신경망 
4.4 컨볼루션 신경망 사례연구 
4.5 생성 모델 
4.6 딥러닝은 왜 강력한가? 
연습문제 

Chapter 05 딥러닝 최적화 
5.1 목적함수: 교차 엔트로피와 로그우도 
5.2 성능 향상을 위한 요령 
5.3 규제의 필요성과 원리 
5.4 규제 기법 
5.5 하이퍼 매개변수 최적화 
5.6 2차 미분을 이용한 최적화 
연습문제 

Chapter 06 비지도 학습 
6.1 지도 학습과 비지도 학습, 준지도 학습 
6.2 비지도 학습 
6.3 군집화 
6.4 밀도 추정 
6.5 공간 변환의 이해 
6.6 선형 인자 모델 
6.7 오토인코더 
6.8 매니폴드 학습 
연습문제 

Chapter 07 준지도 학습과 전이 학습 
7.1 표현 학습의 중요성 
7.2 내부 표현의 이해 
7.3 준지도 학습 
7.4 전이 학습 
연습문제 

Chapter 08 순환 신경망 
8.1 순차 데이터 
8.2 순환 신경망 
8.3 장기 문맥 의존성 
8.4 LSTM 
8.5 응용 사례 
연습문제 

Chapter 09 강화 학습 
9.1 강화 학습의 원리와 성질 
9.2 정책과 가치함수 
9.3 동적 프로그래밍 
9.4 몬테카를로 방법 
9.5 시간차 학습 
9.6 근사 방법 
9.7 응용 사례 
연습문제 

Chapter 10 확률 그래피컬 모델 
10.1 확률과 그래프의 만남 
10.2 베이지안 네트워크 
10.3 마르코프 랜덤필드 
10.4 RBM과 DBN 
연습문제 

Chapter 11 커널 기법 
11.1 커널 트릭 
11.2 커널 리지 회귀 
11.3 커널 PCA 
11.4 SVM 분류 
11.5 SVM 회귀 
연습문제 

Chapter 12 앙상블 방법 
12.1 동기와 원리 
12.2 재샘플링 기법 
12.3 결정 트리와 랜덤 포리스트 
12.4 앙상블 결합 
12.5 딥러닝과 앙상블 
연습문제

관련분야 신착자료

Liu, Zhiyuan, (Computer science and technology) (2020)