HOME > Detail View

Detail View

음성인식에서 Dropconnect를 이용한 DNN regularization

음성인식에서 Dropconnect를 이용한 DNN regularization

Material type
학위논문
Personal Author
임수현 林秀賢
Title Statement
음성인식에서 Dropconnect를 이용한 DNN regularization = DNN regularization using dropconnect in speech recognition / 林秀賢
Publication, Distribution, etc
서울 :   고려대학교 대학원,   2017  
Physical Medium
vi, 38장 ; 26 cm
기타형태 저록
음성인식에서 Dropconnect를 이용한 DNN Regularization   (DCOLL211009)000000077260  
학위논문주기
학위논문(석사)-- 고려대학교 대학원, 컴퓨터·전파통신공학과, 2017. 8
학과코드
0510   6D36   1067  
General Note
지도교수: 陸東錫  
Bibliography, Etc. Note
참고문헌: 장 34-38
이용가능한 다른형태자료
PDF 파일로도 이용가능;   Requires PDF file reader(application/pdf)  
비통제주제어
음성인식, DNN,,
000 00000nam c2200205 c 4500
001 000045915427
005 20230712105237
007 ta
008 170706s2017 ulk bmAC 000c kor
040 ▼a 211009 ▼c 211009 ▼d 211009
041 0 ▼a kor ▼b eng
085 0 ▼a 0510 ▼2 KDCP
090 ▼a 0510 ▼b 6D36 ▼c 1067
100 1 ▼a 임수현 ▼g 林秀賢
245 1 0 ▼a 음성인식에서 Dropconnect를 이용한 DNN regularization = ▼x DNN regularization using dropconnect in speech recognition / ▼d 林秀賢
260 ▼a 서울 : ▼b 고려대학교 대학원, ▼c 2017
300 ▼a vi, 38장 ; ▼c 26 cm
500 ▼a 지도교수: 陸東錫
502 0 ▼a 학위논문(석사)-- ▼b 고려대학교 대학원, ▼c 컴퓨터·전파통신공학과, ▼d 2017. 8
504 ▼a 참고문헌: 장 34-38
530 ▼a PDF 파일로도 이용가능; ▼c Requires PDF file reader(application/pdf)
653 ▼a 음성인식 ▼a DNN
776 0 ▼t 음성인식에서 Dropconnect를 이용한 DNN Regularization ▼w (DCOLL211009)000000077260
900 1 0 ▼a 육동석, ▼g 陸東錫, ▼d 1963-, ▼e 지도교수 ▼0 AUTH(211009)153275
945 ▼a KLPA

Electronic Information

No. Title Service
1
음성인식에서 Dropconnect를 이용한 DNN regularization (102회 열람)
View PDF Abstract Table of Contents

Holdings Information

No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Science & Engineering Library/Stacks(Thesis)/ Call Number 0510 6D36 1067 Accession No. 123056961 Availability Available Due Date Make a Reservation Service B M

Contents information

Abstract

Deep neural network (DNN) based speech recognition is known to outperform conventional HMM based recognizer performance. However, a neural network with a largescale neural network is too fit for given data (training set) if the model is represented by many features or parameters. This problem is referred to as overfitting and fails to predict new data.
To deal with overfitting, a wide range of techniques have been developed.
Pre-training methods and regularization techniques such as L1, L2, and Dropout have been developed. In this paper, we propose a neural network that reduces overfitting by applying Dropconnect, a new normalization method to RBM. It is a method to execute the learning by randomly removing the weight that is connected between the units in the learning process. This is a normalization method developed in the recently announced DROPOUT regularization method, and it is a method of reducing overfitting by combining effects of many models.
Experiments were conducted using speech data TIMIT corpus to evaluate the performance of the proposed method.

Table of Contents

제 1 장 서론 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 1
제 2 장 관련 연구 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 3
2.1 Multi-layer perceptron ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 3
2.2 Forward Procedure ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 4
2.3 Backward Procedure ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 8
2.4 Pre-training ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 10
2.4.1 Restricted Boltzmann machines (RBM) ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 11
2.5 Deep belief network (DBN) ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 15
제 3 장 Regularization ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 18
3.1 Ensemble ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 18
3.1 Dropout ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 20
3.3 제안하는 Dropconnect 알고리즘 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 22
3.4 Dropconnect-RBM ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 23
제 4 장 실험 및 결과 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 25
4.1 실험 환경 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 25
4.2 실험 결과 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 26
4.3 음소 인식 실험 결과 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 26
4.3 최적화 실험 결과 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 29
4.3 미세조정에서 Dropout과 Dropconnect를 적용한 실험 ∙∙∙∙∙∙∙∙∙ 31
제 5 장 결론 및 향후 과제 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 32
참고 문헌 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 34