000 | 00000cam c2200205 c 4500 | |
001 | 000045910122 | |
005 | 20170912112425 | |
007 | ta | |
008 | 170707s2017 ulka 001c kor | |
020 | ▼a 9788968483509 ▼g 93000 | |
035 | ▼a (KERIS)BIB000014485121 | |
040 | ▼a 211052 ▼c 211052 ▼d 211009 | |
041 | 1 | ▼a kor ▼h eng |
082 | 0 4 | ▼a 006.32 ▼2 23 |
085 | ▼a 006.32 ▼2 DDCK | |
090 | ▼a 006.32 ▼b 2017z1 | |
100 | 1 | ▼a Rashid, Tariq ▼0 AUTH(211009)37467 |
245 | 1 0 | ▼a 신경망 첫걸음 : ▼b 수포자도 이해하는 신경망 동작 원리와 딥러닝 기초 / ▼d 타리크 라시드 지음 ; ▼e 송교석 옮김 |
246 | 1 9 | ▼a Make your own neural network : ▼b a gentle journey through the mathematics of neural networks, and making your own using the Python computer language |
260 | ▼a 서울 : ▼b 한빛미디어, ▼c 2017 | |
300 | ▼a 295 p. : ▼b 천연색삽화 ; ▼c 23 cm | |
500 | ▼a 부록: A. 기초 미분, B. 라즈베리 파이에서의 신경망 구현 | |
500 | ▼a 색인수록 | |
650 | 0 | ▼a Neural networks (Computer science) |
650 | 0 | ▼a Python |
650 | 0 | ▼a Maschinelles Lernen |
700 | 1 | ▼a 송교석, ▼e 역 ▼0 AUTH(211009)96356 |
900 | 1 0 | ▼a 라시드, 타리크, ▼e 저 |
945 | ▼a KLPA |
소장정보
No. | 소장처 | 청구기호 | 등록번호 | 도서상태 | 반납예정일 | 예약 | 서비스 |
---|---|---|---|---|---|---|---|
No. 1 | 소장처 중앙도서관/제2자료실(3층)/ | 청구기호 006.32 2017z1 | 등록번호 111778358 | 도서상태 대출중 | 반납예정일 2023-10-11 | 예약 | 서비스 |
No. 2 | 소장처 중앙도서관/제2자료실(3층)/ | 청구기호 006.32 2017z1 | 등록번호 111778858 | 도서상태 대출가능 | 반납예정일 | 예약 | 서비스 |
No. 3 | 소장처 과학도서관/Sci-Info(1층서고)/ | 청구기호 006.32 2017z1 | 등록번호 121240931 | 도서상태 대출가능 | 반납예정일 | 예약 | 서비스 |
No. 4 | 소장처 과학도서관/Sci-Info(1층서고)/ | 청구기호 006.32 2017z1 | 등록번호 121241543 | 도서상태 대출중 | 반납예정일 2023-11-02 | 예약 | 서비스 |
No. 5 | 소장처 세종학술정보원/과학기술실(5층)/ | 청구기호 006.32 2017z1 | 등록번호 151344005 | 도서상태 대출가능 | 반납예정일 | 예약 | 서비스 |
No. | 소장처 | 청구기호 | 등록번호 | 도서상태 | 반납예정일 | 예약 | 서비스 |
---|---|---|---|---|---|---|---|
No. 1 | 소장처 중앙도서관/제2자료실(3층)/ | 청구기호 006.32 2017z1 | 등록번호 111778358 | 도서상태 대출중 | 반납예정일 2023-10-11 | 예약 | 서비스 |
No. 2 | 소장처 중앙도서관/제2자료실(3층)/ | 청구기호 006.32 2017z1 | 등록번호 111778858 | 도서상태 대출가능 | 반납예정일 | 예약 | 서비스 |
No. | 소장처 | 청구기호 | 등록번호 | 도서상태 | 반납예정일 | 예약 | 서비스 |
---|---|---|---|---|---|---|---|
No. 1 | 소장처 과학도서관/Sci-Info(1층서고)/ | 청구기호 006.32 2017z1 | 등록번호 121240931 | 도서상태 대출가능 | 반납예정일 | 예약 | 서비스 |
No. 2 | 소장처 과학도서관/Sci-Info(1층서고)/ | 청구기호 006.32 2017z1 | 등록번호 121241543 | 도서상태 대출중 | 반납예정일 2023-11-02 | 예약 | 서비스 |
No. | 소장처 | 청구기호 | 등록번호 | 도서상태 | 반납예정일 | 예약 | 서비스 |
---|---|---|---|---|---|---|---|
No. 1 | 소장처 세종학술정보원/과학기술실(5층)/ | 청구기호 006.32 2017z1 | 등록번호 151344005 | 도서상태 대출가능 | 반납예정일 | 예약 | 서비스 |
컨텐츠정보
책소개
딥러닝 입문자가 늘고 있지만, 수학 이론을 공부하자니 갈 길이 멀고 원리를 무시한 채 코딩부터 하자니 응용이 불가능하다. 수학 공식과 통계 이론을 달달 익혀야 딥러닝을 배울 수 있는 것은 아니다. 딥러닝을 관통하는 핵심은 신경망이고, 신경망의 기초는 행렬을 통한 가중치 계산뿐이다. 동작 원리를 이해하면 응용과 구현은 자연히 따라온다.
이 책은 전공을 불문하고 행렬곱과 다항식 미분에 필요한 사칙연산만 할 수 있다면 누구나 신경망을 이해하고 나아가 파이썬으로 구현할 수 있음을 보여준다. 수학 공식을 최소화하고 친절한 그림과 명료한 문장으로 개념을 설명한다. 기존의 많은 자료에서 너무 어렵게 혹은 너무 간단히 넘어갔던 가중치, 오차 역전파, 경사 하강법 등을 철저히 일반인의 눈높이에서 학습할 수 있다.
수포자도 이해하는 신경망 동작 원리와 딥러닝 기초
전 세계 독자가 주목한 정말 쉬운 머신러닝 입문서
머신러닝과 딥러닝의 기초는 바로 신경망입니다. 신경망을 이해하지 못하면 계층, 활성화 함수, 역전파 등 머신러닝의 주요 개념을 익히는 데에도 한계가 있습니다. 수학을 공부한 사람은 물론 많은 개발자도 이 신경망이라는 장벽에 부딪혀 딥러닝에 입문하는 데 어려움을 겪고 있습니다.
신경망은 실제로는 그렇게 어렵지 않습니다. 알기 쉽게 가르쳐주는 사람이 없었던 것뿐입니다. 이 책은 나이나 전공을 불문하고 사칙연산만 할 수 있다면 누구나 신경망을 이해할 수 있고, 나아가 파이썬만으로 구현할 수 있다는 것을 보여줍니다. 수학 공식을 최소화하고 친절한 그림과 명료한 문장으로 개념을 설명하는 데 초점을 뒀습니다. 전 세계 5개국에서 번역 출판되었고, 저자는 해외에서 이 책을 토대로 발표 및 교육 활동을 펼쳐 좋은 반응을 얻은 바 있습니다. 수포자라고 해서 딥러닝까지 포기할 필요는 없습니다. 이 책과 함께 다시 도전해보세요!
정보제공 :

저자소개
타리크 라시드(지은이)
20년 경력의 베테랑 개발자. 어려서부터 과학, 수학, 컴퓨팅에서 오는 아름다움을 사랑했다. 많은 멋진 아이디어가 너무 어렵게 가르쳐진다고 생각해, 아름다운 아이디어를 간명하게 바꿔 누구나 이해하고 접근할 수 있게 하는 일을 사명으로 삼게 되었다. 물리학 학사와 머신러닝 및 데이터 마이닝 석사 학위가 있다. 런던 파이썬 미트업 그룹을 이끌고 있으며, 강연이나 워크숍을 즐긴다. 본업은 주로 기술 및 디지털 전략 수립으로, 디자인 싱킹을 활용하려 노력한다. 오픈소스를 무척 좋아하고 영국 정부의 오픈소스 혁신 사업을 이끌기도 했다.
송교석(옮긴이)
고려대학교 졸업 후 카네기 멜런 대학교에서 컴퓨터과학 석사 학위를 받았습니다. LG전자, 동양시스템즈를 거쳐 안랩에서 10년간 근무했으며, 안랩에서 분사한 노리타운스튜디오의 대표를 역임한 바 있습니다. 2017년 4월 메디픽셀(Medipixel)을 설립하여 대표를 맡고 있으며, 인공지능 기반의 폐암 진단 및 수술로봇 자동화 시스템의 연구개발을 진행하고 있습니다. 『신경망 첫걸음』(2017), 『처음 배우는 인공지능』(2017), 『강화학습 첫걸음』(2018, 이상 한빛미디어)을 우리말로 옮겼습니다.

목차
프롤로그 PART 1 인공 신경망의 동작 원리 1장 인간에게는 쉽고 기계에게는 어려운 2장 간단한 예측자 3장 분류는 예측과 그다지 다르지 않습니다 4장 분류자 학습시키기 5장 분류자 1개로는 충분치 않을 수 있습니다 6장 대자연의 컴퓨터, 뉴런 7장 신경망 내의 신호 따라가기 8장 솔직히 행렬곱은 유용합니다 9장 3계층 신경망에 행렬곱 적용하기 10장 여러 노드에서 가중치 학습하기 11장 여러 노드에서의 오차의 역전파 12장 다중 계층에서의 오차의 역전파 13장 행렬곱을 이용한 오차의 역전파 14장 가중치의 진짜 업데이트 15장 가중치 업데이트 예제 16장 데이터 준비하기 PART 2 파이썬으로 인공 신경망 직접 만들기 17장 파이썬 18장 인터랙티브 파이썬 = IPython 19장 파이썬 시작하기 20장 파이썬으로 인공 신경망 만들기 21장 MNIST 손글씨 데이터 인식하기 PART 3 더 재미있는 것들 22장 나만의 손글씨 데이터 23장 신경망의 마음속 들여다보기 24장 회전을 통해 새로운 학습 데이터 만들기 에필로그 부록 A 기초 미분 부록 B 라즈베리 파이에서의 신경망 구현