HOME > 상세정보

상세정보

Deep learning for medical image analysis

Deep learning for medical image analysis (12회 대출)

자료유형
단행본
개인저자
Zhou, S. Kevin. Greenspan, Hayit. Shen, Dinggang.
서명 / 저자사항
Deep learning for medical image analysis / edited by S. Kevin Zhou, Hayit Greenspan, Dinggang Shen.
발행사항
London, United Kingdom :   Academic Press is an imprint of Elsevier,   c2017.  
형태사항
xxiii, 433 p. : ill. (some col.) ; 24 cm.
기타형태 저록
Online version:   Zhou, S. Kevin   Deep learning for medical image analysis.   London, United Kingdom : Academic Press is an imprint of Elsevier, [2017]   9780128104095   (211009)000045949220  
ISBN
9780128104088
일반주기
Online version: Zhou, S. Kevin Deep learning for medical image analysis. London, United Kingdom : Academic Press is an imprint of Elsevier, [2017] 9780128104095
서지주기
Includes bibliographical references and index.
일반주제명
Diagnostic imaging --Data processing. Image analysis.
000 00000nam u2200205 a 4500
001 000045898702
005 20180807092802
008 170306s2017 enka b 001 0 eng d
020 ▼a 9780128104088
040 ▼a 211009 ▼c 211009 ▼d 211009
082 0 4 ▼a 616.0754 ▼2 23
084 ▼a 616.0754 ▼2 DDCK
090 ▼a 616.0754 ▼b D311
245 0 0 ▼a Deep learning for medical image analysis / ▼c edited by S. Kevin Zhou, Hayit Greenspan, Dinggang Shen.
260 ▼a London, United Kingdom : ▼b Academic Press is an imprint of Elsevier, ▼c c2017.
300 ▼a xxiii, 433 p. : ▼b ill. (some col.) ; ▼c 24 cm.
504 ▼a Includes bibliographical references and index.
650 0 ▼a Diagnostic imaging ▼x Data processing.
650 0 ▼a Image analysis.
700 1 ▼a Zhou, S. Kevin.
700 1 ▼a Greenspan, Hayit.
700 1 ▼a Shen, Dinggang.
776 0 8 ▼i Online version: ▼a Zhou, S. Kevin ▼t Deep learning for medical image analysis. ▼d London, United Kingdom : Academic Press is an imprint of Elsevier, [2017] ▼z 9780128104095 ▼w (211009)000045949220
945 ▼a KLPA

소장정보

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/Sci-Info(2층서고)/ 청구기호 616.0754 D311 등록번호 121239327 도서상태 대출가능 반납예정일 예약 서비스 B M

컨텐츠정보

목차

PART 1: INTRODUCTION

1. An introduction to neural network and deep learning (covering CNN, RNN, RBM, Autoencoders) (Heung-Il Suk)

2. An Introduction to Deep Convolutional Neural Nets for Computer Vision??(Suraj Srinivas, Ravi K. Sarvadevabhatla, Konda R. Mopuri, Nikita Prabhu, Srinivas S.S. Kruthiventi and R. Venkatesh Babu)

PART 2: MEDICAL IMAGE DETECTION AND RECOGNITION

3. Efficient Medical Image Parsing (Florin C. Ghesu, Bogdan Georgescu and Joachim Hornegger)

4. Multi-Instance Multi-Stage Deep Learning for Medical Image Recognition?(Zhennan Yan, Yiqiang Zhan, Shaoting Zhang, Dimitris Metaxas and Xiang Sean Zhou)

5. Automatic Interpretation of Carotid Intima?Media Thickness Videos Using Convolutional Neural Networks? (Nima Tajbakhsh, Jae Y. Shin, R. Todd Hurst, Christopher B. Kendall and Jianming Liang)

6. Deep Cascaded Networks for Sparsely Distributed Object Detection from Medical Images (Hao Chen, Qi Dou, Lequan Yu, Jing Qin, Lei Zhao, Vincent C.T. Mok, Defeng Wang, Lin Shi and Pheng-Ann Heng)

7. Deep Voting and Structured Regression for Microscopy Image Analysis (Yuanpu Xie, Fuyong Xing and Lin Yang)

PART 3 MEDICAL IMAGE SEGMENTATION

8. Deep Learning Tissue Segmentation in Cardiac Histopathology Images (Jeffrey J. Nirschl, Andrew Janowczyk, Eliot G. Peyster, Renee Frank, Kenneth B. Margulies, Michael D. Feldman and Anant Madabhushi)

9. Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching (Yanrong Guo, Yaozong Gao and Dinggang Shen)

10. Characterization of Errors in Deep Learning-Based Brain MRI Segmentation (Akshay Pai, Yuan-Ching Teng, Joseph Blair, Michiel Kallenberg, Erik B. Dam, Stefan Sommer, Christian Igel and Mads Nielsen)

PART 4 MEDICAL IMAGE REGISTRATION

11. Scalable High Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning (Shaoyu Wang, Minjeong Kim, Guorong Wu and Dinggang Shen)

12. Convolutional Neural Networks for Robust and Real-Time 2-D/3-D Registration (Shun Miao, Jane Z. Wang and Rui Liao)

PART 5 COMPUTER-AIDED DIAGNOSIS AND DISEASE QUANTIFICATION

13. Chest Radiograph Pathology Categorization via Transfer Learning (Idit Diamant, Yaniv Bar, Ofer Geva, Lior Wolf, Gali Zimmerman, Sivan Lieberman, Eli Konen and Hayit Greenspan)

14. Deep Learning Models for Classifying Mammogram Exams Containing Unregistered Multi-View Images and Segmentation Maps of Lesions (Gustavo Carneiro, Jacinto Nascimento and Andrew P. Bradley)

15. Randomized Deep Learning Methods for Clinical Trial Enrichment and Design in Alzheimer’s Disease (Vamsi K. Ithapu, Vikas Singh and Sterling C. Johnson)

16. Deep Networks and Mutual Information Maximization for Cross-Modal Medical Image Synthesis (Raviteja Vemulapalli, Hien Van Nguyen and S.K. Zhou)

17. Natural Language Processing for Large-Scale Medical Image Analysis Using Deep Learning (Hoo-Chang Shin, Le Lu and Ronald M. Summers)

Index


정보제공 : Aladin

관련분야 신착자료

Reiter, Michael D (2021)
Mansell, Warren (2021)
소희정 (2021)
Leutenberg, Ester R. A (2021)
김이영 (2021)