000 | 00000nam c2200205 c 4500 | |
001 | 000045897594 | |
005 | 20170329132613 | |
007 | ta | |
008 | 170103s2017 ulka bmAC 000c eng | |
040 | ▼a 211009 ▼c 211009 ▼d 211009 | |
085 | 0 | ▼a 0510 ▼2 KDCP |
090 | ▼a 0510 ▼b 6YD36 ▼c 316 | |
100 | 1 | ▼a 최재훈 ▼g 崔載薰 |
245 | 1 1 | ▼a (A) new framework for entity search using sub-document level indexing and consensus ranking / ▼d Jaehoon Choi |
260 | ▼a Seoul : ▼b Graduate School, Korea University, ▼c 2017 | |
300 | ▼a iv, 43장 : ▼b 삽화 ; ▼c 26 cm | |
500 | ▼a 지도교수: 姜在雨 | |
502 | 1 | ▼a 학위논문(박사)-- ▼b 고려대학교 대학원: ▼c 컴퓨터·전파통신공학과, ▼d 2017. 2 |
504 | ▼a 참고문헌: 장 40-43 | |
530 | ▼a PDF 파일로도 이용가능; ▼c Requires PDF file reader(application/pdf) | |
653 | ▼a opinion mining ▼a consensus search ▼a subdocument level indexing ▼a sentiment analysis | |
776 | 0 | ▼t A new framework for entity search using sub-document level indexing and consensus ranking ▼w (DCOLL211009)000000072553 |
900 | 1 0 | ▼a Choi, Jae-hoon, ▼e 저 |
900 | 1 0 | ▼a 강재우 ▼g 姜在雨, ▼e 지도교수 |
945 | ▼a KLPA |
전자정보
소장정보
No. | 소장처 | 청구기호 | 등록번호 | 도서상태 | 반납예정일 | 예약 | 서비스 |
---|---|---|---|---|---|---|---|
No. 1 | 소장처 과학도서관/학위논문서고/ | 청구기호 0510 6YD36 316 | 등록번호 123055699 | 도서상태 대출가능 | 반납예정일 | 예약 | 서비스 |
컨텐츠정보
초록
Search engines have become the necessities of life, today. Especially, a great part of searches are informational types. The purpose of informational search is getting useful information what user wants to know about topics such as movie, restaurant or even bio-medical. Due to the traditional structure of search engine, it has a limitation to retrieve rich information as results. Typical search system returns a list of documents. It’s very efficient for navigational or transnational search, but not for informational. In case of an informational search, users have to go through the contents of documents to get information. In order to address this problem, we introduce a new entity search framework named Consento designed to answer informational queries. This framework performs subdocument level indexing, as opposed to document indexing, to return semantic enhanced results. In particular, we define a new indexing unit, Maximal Coherent Semantic Unit (MCSU). An MCSU represents a segment of a document, which captures a single coherent semantic. We also introduce a new ranking method, called ConsensusRank that counts captured semantics referring to an entity as a weighted vote. In order to validate the efficacy of the proposed framework, we compare with standard retrieval models and their recent extensions for entity ranking. Experiments using bio medical, movie, hotel and restaurant data show the effectiveness of our framework.
목차
Abstract Contents i List of Figures iii List of Tables iv 1 Introduction 1 2 Related Work 7 3 Consento architecture 10 3.1 Indexing Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1.2 Content Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1.3 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Search Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 Query Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.2 Retrieval and Ranking . . . . . . . . . . . . . . . . . . . . . . . . . 18 4 Validation 22 4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 Comparison with Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 Smith Search: Consento based Restaurant Search System 31 5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2 Smith Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.3 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.4 System Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6 Conclusion 38 Bibliography 40 Acknowledgement ii