HOME > 상세정보

상세정보

Deep learning

Deep learning (89회 대출)

자료유형
단행본
개인저자
Goodfellow, Ian. Bengio, Yoshua, 1964- Courville, Aaron
서명 / 저자사항
Deep learning / Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
발행사항
Cambridge, MA :   MIT Press,   c2016.  
형태사항
xxii, 775 p. : ill. (some col.) ; 24 cm.
총서사항
Adaptive computation and machine learning series
ISBN
9780262035613 (hardcover : alk. paper)
서지주기
Includes bibliographical references and index.
일반주제명
Machine learning.
000 00000cam u2200205 a 4500
001 000045892084
005 20221123181739
008 170105s2016 maua b 001 0 eng d
010 ▼a 2016022992
020 ▼a 9780262035613 (hardcover : alk. paper)
035 ▼a (KERIS)REF000018128489
040 ▼a DLC ▼b eng ▼e rda ▼c DLC ▼d 211009
050 0 0 ▼a Q325.5 ▼b .G66 2017
082 0 0 ▼a 006.3/1 ▼2 23
084 ▼a 006.31 ▼2 DDCK
090 ▼a 006.31 ▼b G651d
100 1 ▼a Goodfellow, Ian.
245 1 0 ▼a Deep learning / ▼c Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
260 ▼a Cambridge, MA : ▼b MIT Press, ▼c c2016.
300 ▼a xxii, 775 p. : ▼b ill. (some col.) ; ▼c 24 cm.
490 1 ▼a Adaptive computation and machine learning series
504 ▼a Includes bibliographical references and index.
650 0 ▼a Machine learning.
700 1 ▼a Bengio, Yoshua, ▼d 1964- ▼0 AUTH(211009)147818.
700 1 ▼a Courville, Aaron ▼0 AUTH(211009)147819.
830 0 ▼a Adaptive computation and machine learning series.
945 ▼a KLPA

소장정보

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/Sci-Info(2층서고)/ 청구기호 006.31 G651d 등록번호 121238616 도서상태 대출중 반납예정일 2023-10-11 예약 서비스 M
No. 2 소장처 과학도서관/Sci-Info(2층서고)/ 청구기호 006.31 G651d 등록번호 121241706 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 3 소장처 과학도서관/Sci-Info(2층서고)/ 청구기호 006.31 G651d 등록번호 121245251 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 4 소장처 과학도서관/Sci-Info(2층서고)/ 청구기호 006.31 G651d 등록번호 121260695 도서상태 대출중 반납예정일 2023-10-14 예약 서비스 M

컨텐츠정보

저자소개

요슈아 벤지오(지은이)

몬트리올 대학교의 컴퓨터 과학 교수이다.

이안 굿펠로(지은이)

구글의 연구 과학자이다.

에런 쿠빌(지은이)

몬트리올 대학교의 컴퓨터 과학 조교수이다.

정보제공 : Aladin

목차

Applied math and machine learning basics. Linear algebra 
Probability and information theory 
Numerical computation 
Machine learning basics 
Deep networks: modern practices. Deep feedforward networks
Regularization for deep learning
Optimization for training deep models
Convolutional networks
 Sequence modeling: recurrent and recursive nets
Practical methodology 
Applications 
Deep learning research. Linear factor models
Autoencoders 
Representation learning 
Structured probabilistic models for deep learning 
Monte Carlo methods
Confronting the partition function
Approximate inference 
Deep generative models.

관련분야 신착자료