HOME > 상세정보

상세정보

Data mining for business analytics : concepts, techniques, and applications in Microsoft Office Excel with XLMiner 3rd ed

Data mining for business analytics : concepts, techniques, and applications in Microsoft Office Excel with XLMiner 3rd ed (10회 대출)

자료유형
단행본
개인저자
Shmueli, Galit, 1971-. Patel, Nitin R. (Nitin Ratilal). Bruce, Peter C., 1953-.
서명 / 저자사항
Data mining for business analytics : concepts, techniques, and applications in Microsoft Office Excel with XLMiner / Galit Shmueli, Nitin R. Patel, Peter C. Bruce.
판사항
3rd ed.
발행사항
Hoboken, New Jersey :   John Wiley & Sons,   2016.  
형태사항
xxxi, 514 p. : ill. ; 27 cm.
ISBN
9781118729274 (cloth)
일반주기
Originally published as: Data mining for business intelligence, 2007.  
내용주기
Overview of the data mining process -- Data visualization -- Dimension reduction -- Evaluating predictive performance -- Multiple linear regression -- k-Nearest Neighbors (kNN) -- The Naive Bayes Classifier -- Classification and regression trees -- Logistic regression -- Neural nets -- Discriminant analysis -- Combining methods : ensembles and uplift modeling -- Association rules and collaborative filtering -- Cluster analysis -- Handling time series -- Regression-based forecasting -- Smoothing methods -- Social network analytics -- Text mining.
서지주기
Includes bibliographical references and index.
일반주제명
Business --Data processing. Data mining.
000 00000cam u2200205 a 4500
001 000045873877
005 20160614154823
008 160613s2016 njua b 001 0 eng d
010 ▼a 2015040496
020 ▼a 9781118729274 (cloth)
035 ▼a (KERIS)REF000017917149
040 ▼a WaSeSS/DLC ▼b eng ▼e rda ▼c WaSeSS ▼d 211009
050 0 0 ▼a HF5548.2 ▼b .S44843 2016
082 0 0 ▼a 005.54 ▼2 23
084 ▼a 005.54 ▼2 DDCK
090 ▼a 005.54 ▼b S558d3
100 1 ▼a Shmueli, Galit, ▼d 1971-.
240 1 0 ▼a Data mining for business intelligence
245 1 0 ▼a Data mining for business analytics : ▼b concepts, techniques, and applications in Microsoft Office Excel with XLMiner / ▼c Galit Shmueli, Nitin R. Patel, Peter C. Bruce.
250 ▼a 3rd ed.
260 ▼a Hoboken, New Jersey : ▼b John Wiley & Sons, ▼c 2016.
300 ▼a xxxi, 514 p. : ▼b ill. ; ▼c 27 cm.
500 ▼a Originally published as: Data mining for business intelligence, 2007.
504 ▼a Includes bibliographical references and index.
505 0 0 ▼t Overview of the data mining process -- ▼t Data visualization -- ▼t Dimension reduction -- ▼t Evaluating predictive performance -- ▼t Multiple linear regression -- ▼t k-Nearest Neighbors (kNN) -- ▼t The Naive Bayes Classifier -- ▼t Classification and regression trees -- ▼t Logistic regression -- ▼t Neural nets -- ▼t Discriminant analysis -- ▼t Combining methods : ensembles and uplift modeling -- ▼t Association rules and collaborative filtering -- ▼t Cluster analysis -- ▼t Handling time series -- ▼t Regression-based forecasting -- ▼t Smoothing methods -- ▼t Social network analytics -- ▼t Text mining.
630 0 0 ▼a Microsoft Excel (Computer file).
650 0 ▼a Business ▼x Data processing.
650 0 ▼a Data mining.
700 1 ▼a Patel, Nitin R. ▼q (Nitin Ratilal).
700 1 ▼a Bruce, Peter C., ▼d 1953-.
945 ▼a KLPA

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 중앙도서관/서고6층/ 청구기호 005.54 S558d3 등록번호 111757817 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 2 소장처 과학도서관/Sci-Info(2층서고)/ 청구기호 005.54 S558d3 등록번호 121240622 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 중앙도서관/서고6층/ 청구기호 005.54 S558d3 등록번호 111757817 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/Sci-Info(2층서고)/ 청구기호 005.54 S558d3 등록번호 121240622 도서상태 대출가능 반납예정일 예약 서비스 B M

컨텐츠정보

저자소개

갈리트 시뮤엘리(지은이)

현재 대만 국립 칭화대학교 서비스 사이언스 연구소의 칭화 특훈교수이며, 베스트셀러인 비즈니스를 위한 데이터마이닝 책의 공동저자이다. 그동안 관련 분야에서 다수의 전문서적을 출간하였으며, 최고 학술지에 다수의 논문을 게재하였다. 또한, 시뮤엘리 교수는 인도 경영대학, 미국 메릴랜드대학교 스미스 경영대학원, 인도 경영대학 대만 국립칭화대학교, Statistics.com 등에서 예측, 데이터마이닝, 통계학, 기타 데이터 분석 등의 과목을 설계하고, 강의한 경력이 있다.

정보제공 : Aladin

목차

Foreword xvii

Preface to the Third Edition xix

Preface to the First Edition xxii

Acknowledgments xxiv

PART I PRELIMINARIES

CHAPTER 1 Introduction 3

1.1 What is Business Analytics? 3

1.2 What is Data Mining? 5

1.3 Data Mining and Related Terms 5

1.4 Big Data 6

1.5 Data Science 7

1.6 Why Are There So Many Different Methods? 8

1.7 Terminology and Notation 9

1.8 Road Maps to This Book 11

Order of Topics 12

CHAPTER 2 Overview of the Data Mining Process 14

2.1 Introduction 14

2.2 Core Ideas in Data Mining 15

2.3 The Steps in Data Mining 18

2.4 Preliminary Steps 20

2.5 Predictive Power and Overfitting 26

2.6 Building a Predictive Model with XLMiner 30

2.7 Using Excel for Data Mining 40

2.8 Automating Data Mining Solutions 40

Data Mining Software Tools (by Herb Edelstein) 42

Problems 45

PART II DATA EXPLORATION AND DIMENSION REDUCTION

CHAPTER 3 Data Visualization 50

3.1 Uses of Data Visualization 50

3.2 Data Examples 52

Example 1: Boston Housing Data 52

Example 2: Ridership on Amtrak Trains 53

3.3 Basic Charts: Bar Charts, Line Graphs, and Scatter Plots 53

Distribution Plots 54

Heatmaps: Visualizing Correlations and Missing Values 57

3.4 Multi-Dimensional Visualization 58

Adding Variables 59

Manipulations 61

Reference: trend line and labels 64

Scaling up to Large Datasets 65

Multivariate Plot 66

Interactive Visualization 67

3.5 Specialized Visualizations 70

Visualizing Networked Data 70

Visualizing Hierarchical Data: Treemaps 72

Visualizing Geographical Data: Map Charts 73

3.6 Summary: Major Visualizations and Operations, by Data Mining Goal 75

Prediction 75

Classification 75

Time Series Forecasting 75

Unsupervised Learning 76

Problems 77

CHAPTER 4 Dimension Reduction 79

4.1 Introduction 79

4.2 Curse of Dimensionality 80

4.3 Practical Considerations 80

Example 1: House Prices in Boston 80

4.4 Data Summaries 81

4.5 Correlation Analysis 84

4.6 Reducing the Number of Categories in Categorical Variables 85

4.7 Converting A Categorical Variable to A Numerical Variable 86

4.8 Principal Components Analysis 86

Example 2: Breakfast Cereals 87

Principal Components 92

Normalizing the Data 93

Using Principal Components for Classification and Prediction 94

4.9 Dimension Reduction Using Regression Models 96

4.10 Dimension Reduction Using Classification and Regression Trees 96

Problems 97

PART III PERFORMANCE EVALUATION

CHAPTER 5 Evaluating Predictive Performance 101

5.1 Introduction 101

5.2 Evaluating Predictive Performance 102

Benchmark: The Average 102

Prediction Accuracy Measures 103

5.3 Judging Classifier Performance 106

Benchmark: The Naive Rule 107

Class Separation 107

The Classification Matrix 107

Using the Validation Data 109

Accuracy Measures 109

Cutoff for Classification 110

Performance in Unequal Importance of Classes 114

Asymmetric Misclassification Costs 116

5.4 Judging Ranking Performance 119

5.5 Oversampling 123

Problems 129

PART IV PREDICTION AND CLASSIFICATION METHODS

CHAPTER 6 Multiple Linear Regression 134

6.1 Introduction 134

6.2 Explanatory vs. Predictive Modeling 135

6.3 Estimating the Regression Equation and Prediction 136

Example: Predicting the Price of Used Toyota Corolla Cars 137

6.4 Variable Selection in Linear Regression 141

Reducing the Number of Predictors 141

How to Reduce the Number of Predictors 142

Problems 147

CHAPTER 7 k-Nearest Neighbors (kNN) 151

7.1 The k-NN Classifier (categorical outcome) 151

Determining Neighbors 151

Classification Rule 152

Example: Riding Mowers 152

Choosing k 154

Setting the Cutoff Value 154

7.2 k-NN for a Numerical Response 156

7.3 Advantages and Shortcomings of k-NN Algorithms 158

Problems 160

CHAPTER 8 The Naive Bayes Classifier 162

8.1 Introduction 162

Example 1: Predicting Fraudulent Financial Reporting 163

8.2 Applying the Full (Exact) Bayesian Classifier 164

8.3 Advantages and Shortcomings of the Naive Bayes Classifier 172

Advantages and Shortcomings of the naive Bayes Classifier 172

Problems 176

CHAPTER 9 Classification and Regression Trees 178

9.1 Introduction 178

9.2 Classification Trees 179

Example 1: Riding Mowers 180

9.3 Measures of Impurity 183

9.4 Evaluating the Performance of a Classification Tree 187

Example 2: Acceptance of Personal Loan 188

9.5 Avoiding Overfitting 192

Stopping Tree Growth: CHAID 192

Pruning the Tree 193

9.6 Classification Rules from Trees 198

9.7 Classification Trees for More Than two Classes 198

9.8 Regression Trees 198

Prediction 199

Measuring Impurity 200

Evaluating Performance 200

9.9 Advantages and Weaknesses of a Tree 200

9.10 Improving Prediction: Multiple Trees 202

Problems 205

CHAPTER 10 Logistic Regression 209

10.1 Introduction 209

10.2 The Logistic Regression Model 211

Example: Acceptance of Personal Loan 212

Model with a Single Predictor 214

Estimating the Logistic Model from Data 215

Interpreting Results in Terms of Odds 218

10.3 Evaluating Classification Performance 219

Variable Selection 220

10.4 Example of Complete Analysis: Predicting Delayed Flights 222

Data Preprocessing 224

Model Fitting and Estimation 224

Model Interpretation 226

Model Performance 226

Variable Selection 227

10.5 Appendix: Logistic Regression for Profiling 231

Appendix A: Why Linear Regression Is Problematic for a Categorical Response 231

Appendix B: Evaluating Explanatory Power 233

Appendix C: Logistic Regression for More Than Two Classes 235

Problems 239

CHAPTER 11 Neural Nets 242

11.1 Introduction 242

11.2 Concept and Structure of a Neural Network 243

11.3 Fitting a Network to Data 243

Example 1: Tiny Dataset 244

Computing Output of Nodes 245

Preprocessing the Data 248

Training the Model 248

Example 2: Classifying Accident Severity 253

Avoiding overfitting 254

Using the Output for Prediction and Classification 258

11.4 Required User Input 258

11.5 Exploring the Relationship Between Predictors and Response 259

11.6 Advantages and Weaknesses of Neural Networks 261

Problems 262

CHAPTER 12 Discriminant Analysis 264

12.1 Introduction 264

Example 1: Riding Mowers 265

Example 2: Personal Loan Acceptance 265

12.2 Distance of an Observation from a Class 267

12.3 Fisher’s Linear Classification Functions 268

12.4 Classification Performance of Discriminant Analysis 272

12.5 Prior Probabilities 273

12.6 Unequal Misclassification Costs 274

12.7 Classifying More Than Two Classes 274

Example 3: Medical Dispatch to Accident Scenes 274

12.8 Advantages and Weaknesses 277

Problems 279

CHAPTER 13 Combining Methods: Ensembles and Uplift Modeling 282

13.1 Ensembles 282

Why Ensembles Can Improve Predictive Power 283

Simple Averaging 284

Bagging 286

Boosting 286

Advantages and Weaknesses of Ensembles 286

13.2 Uplift (Persuasion) Modeling 287

A-B Testing 287

Uplift 288

Gathering the Data 288

A Simple Model 289

Modeling Individual Uplift 290

Using the Results of an Uplift Model 292

13.3 Summary 292

Problems 293

PART V MINING RELATIONSHIPS AMONG RECORDS

CHAPTER 14 Association Rules and Collaborative Filtering 297

14.1 Association Rules 297

Discovering Association Rules in Transaction Databases 298

Example 1: Purchases of Phone Faceplates 298

Generating Candidate Rules 298

The Apriori Algorithm 301

Selecting Strong Rules 301

Data Format 303

The Process of Rule Selection 304

Interpreting the Results 306

Rules and Chance 306

Example 2: Rules for Similar Book Purchases 308

14.2 Collaborative Filtering1 310

Data Type and Format 311

Example 3: Netflix Prize Contest 311

User-Based Collaborative Filtering: “People Like You” 312

Item-Based Collaborative Filtering 315

Advantages and Weaknesses of Collaborative Filtering 316

Collaborative Filtering vs. Association Rules 316

14.3 Summary 318

Problems 320

CHAPTER 15 Cluster Analysis 324

15.1 Introduction 324

Example: Public Utilities 326

15.2 Measuring Distance Between Two Observations 328

Euclidean Distance 328

Normalizing Numerical Measurements 328

Other Distance Measures for Numerical Data 329

Distance Measures for Categorical Data 331

Distance Measures for Mixed Data 331

15.3 Measuring Distance Between Two Clusters 332

15.4 Hierarchical (Agglomerative) Clustering 334

Single Linkage 335

Complete Linkage 335

Average Linkage 336

Centroid Linkage 336

Dendrograms: Displaying Clustering Process and Results 337

Validating Clusters 339

Limitations of Hierarchical Clustering 340

15.5 Non-hierarchical Clustering: The k-Means Algorithm 341

Initial Partition into k Clusters 342

Problems 346

PART VI FORECASTING TIME SERIES

CHAPTER 16 Handling Time Series 351

16.1 Introduction 351

16.2 Descriptive vs. Predictive Modeling 352

16.3 Popular Forecasting Methods in Business 353

Combining Methods 353

16.4 Time Series Components 354

Example: Ridership on Amtrak Trains 354

16.5 Data Partitioning and Performance Evaluation 358

Benchmark Performance: Naive Forecasts 359

Generating Future Forecasts 359

Problems 361

CHAPTER 17 Regression-Based Forecasting 364

17.1 A Model with Trend 364

Linear Trend 364

Exponential Trend 366

Polynomial Trend 369

17.2 A Model with Seasonality 370

17.3 A model with trend and seasonality 371

17.4 Autocorrelation and ARIMA Models 371

Computing Autocorrelation 374

Improving Forecasts by Integrating Autocorrelation Information 376

Evaluating Predictability 380

Problems 382

CHAPTER 18 Smoothing Methods 392

18.1 Introduction 392

18.2 Moving Average 393

Centered Moving Average for Visualization 393

Trailing Moving Average for Forecasting 395

Choosing Window Width (w) 399

18.3 Simple Exponential Smoothing 399

Choosing Smoothing Parameter 400

Relation Between Moving Average and Simple Exponential Smoothing 401

18.4 Advanced Exponential Smoothing 402

Series with a Trend 402

Series with a Trend and Seasonality 403

Series with Seasonality (No Trend) 403

Problems 405

PART VII DATA ANALYTICS

CHAPTER 19 Social Network Analytics 415

19.1 Introduction 415

19.2 Directed vs. Undirected Networks 416

19.3 Visualizing and analyzing networks 418

Graph Layout 418

Adjacency List 421

Adjacency Matrix 422

Using Network Data in Classification and Prediction 422

19.4 Social Data Metrics and Taxonomy 423

Node-Level Centrality Metrics 423

Egocentric Network 424

Network Metrics 425

19.5 Using Network Metrics in Prediction and Classification 427

Link Prediction 427

Entity Resolution 427

Collaborative Filtering 428

Advantages and Disadvantages 431

Problems 434

CHAPTER 20 Text Mining 436

20.1 Introduction 436

20.2 The Spreadsheet Representation of Text: “Bag-of-Words” 437

20.3 Bag-of-Words vs. Meaning Extraction at Document Level 437

20.4 Preprocessing the Text 438

Tokenization 439

Text Reduction 439

Presence/Absence vs. Frequency 440

Term Frequency - Inverse Document Frequency (TF-IDF) 441

From Terms to Concepts: Latent Semantic Indexing 441

Extracting Meaning 441

20.5 Implementing data mining methods 442

20.6 Example: Online Discussions on Autos and Electronics 442

Importing and Labeling the Records 443

Tokenization 444

Text Processing and Reduction 444

Producing a Concept Matrix 444

Labeling the Documents 447

Fitting a Model 447

Prediction 449

20.7 Summary 449

Problems 450

PART VIII CASES

CHAPTER 21 Cases 454

21.1 Charles Book Club2 454

21.2 German Credit 463

21.3 Tayko Software Cataloger3 468

21.4 Political Persuasion4 472

21.5 Taxi Cancellations5 475

21.6 Segmenting Consumers of Bath Soap6 477

21.7 Direct-Mail Fundraising 480

21.8 Catalog Cross-Selling7 483

21.9 Predicting Bankruptcy 484

21.10Time Series Case: Forecasting Public Transportation Demand 487

References 489


정보제공 : Aladin

관련분야 신착자료