
000 | 00000cam u2200205 a 4500 | |
001 | 000045859263 | |
005 | 20160128102256 | |
008 | 160127s2014 njua 001 0 eng d | |
010 | ▼a 2013033541 | |
020 | ▼a 9781118473504 (cloth : acid-free paper) | |
020 | ▼a 1118473507 (cloth : acid-free paper) | |
035 | ▼a (KERIS)REF000017565277 | |
040 | ▼a DLC ▼b eng ▼c DLC ▼e rda ▼d DLC ▼d 211009 | |
050 | 0 0 | ▼a QA184.2 ▼b .A58 2013 |
082 | 0 0 | ▼a 512/.5 ▼2 23 |
084 | ▼a 512.5 ▼2 DDCK | |
090 | ▼a 512.5 ▼b A634e11 | |
100 | 1 | ▼a Anton, Howard. |
245 | 1 0 | ▼a Elementary linear algebra / ▼c Howard Anton, Professor Emeritus, Drexel University. |
250 | ▼a 11th ed. | |
260 | ▼a Hoboken, NJ : ▼b Wiley, ▼c c2014. | |
300 | ▼a xii, 525, 53 p. : ▼b ill. ; ▼c 27 cm. | |
500 | ▼a Includes index. | |
505 | 0 0 | ▼g 1. ▼t Systems of linear equations and matrices -- ▼g 2. ▼t Determinants -- ▼g 3. ▼t Euclidian vector spaces -- ▼g 4. ▼t General vector spaces -- ▼g 5. ▼t Eignvalues and eigenvectors -- ▼g 6. ▼t Inner product spaces -- ▼g 7. ▼t Diagonolization and quadratic forms -- ▼g 8. ▼t General linear transformations -- ▼g 9. ▼t Numerical methods. |
650 | 0 | ▼a Algebras, Linear ▼v Textbooks. |
945 | ▼a KLPA |
Holdings Information
No. | Location | Call Number | Accession No. | Availability | Due Date | Make a Reservation | Service |
---|---|---|---|---|---|---|---|
No. 1 | Location Science & Engineering Library/Sci-Info(Stacks2)/ | Call Number 512.5 A634e11 | Accession No. 121235472 | Availability Available | Due Date | Make a Reservation | Service |
Contents information
Table of Contents
C H A P T E R 1 Systems of Linear Equations and Matrices
1.1 Introduction to Systems of Linear Equations
1.2 Gaussian Elimination
1.3 Matrices and Matrix Operations
1.4 Inverses; Algebraic Properties of Matrices
1.5 Elementary Matrices and a Method for Finding A−1
1.6 More on Linear Systems and Invertible Matrices
1.7 Diagonal, Triangular, and Symmetric Matrices
1.8 Matrix Transformations
1.9 Applications of Linear Systems
• Network Analysis (Traffic Flow)
• Electrical Circuits
• Balancing Chemical Equations
• Polynomial Interpolation
1.10 Application: Leontief Input-Output Models
C H A P T E R 2 Determinants
2.1 Determinants by Cofactor Expansion
2.2 Evaluating Determinants by Row Reduction
2.3 Properties of Determinants; Cramer’s Rule
C H A P T E R 3 Euclidean Vector Spaces
3.1 Vectors in 2-Space, 3-Space, and n-Space
3.2 Norm, Dot Product, and Distance in Rn
3.3 Orthogonality
3.4 The Geometry of Linear Systems
3.5 Cross Product
C H A P T E R 4 General Vector Spaces
4.1 Real Vector Spaces
4.2 Subspaces
4.3 Linear Independence
4.4 Coordinates and Basis
4.5 Dimension
4.6 Change of Basis
4.7 Row Space, Column Space, and Null Space
4.8 Rank, Nullity, and the Fundamental Matrix Spaces
4.9 Basic Matrix Transformations in R2 and R3
4.10 Properties of Matrix Transformations
4.11 Application: Geometry of Matrix Operators on R2
C H A P T E R 5 Eigenvalues and Eigenvectors
5.1 Eigenvalues and Eigenvectors
5.2 Diagonalization
5.3 Complex Vector Spaces
5.4 Application: Differential Equations
5.5 Application: Dynamical Systems and Markov Chains
C H A P T E R 6 Inner Product Spaces
6.1 Inner Products
6.2 Angle and Orthogonality in Inner Product Spaces
6.3 Gram–Schmidt Process; QR-Decomposition
6.4 Best Approximation; Least Squares
6.5 Application: Mathematical Modeling Using Least Squares
6.6 Application: Function Approximation; Fourier Series
C H A P T E R 7 Diagonalization and Quadratic Forms
7.1 Orthogonal Matrices
7.2 Orthogonal Diagonalization
7.3 Quadratic Forms
7.4 Optimization Using Quadratic Forms
7.5 Hermitian, Unitary, and Normal Matrices
C H A P T E R 8 General Linear Transformations
8.1 General Linear Transformation
8.2 Compositions and Inverse Transformations
8.3 Isomorphism
8.4 Matrices for General Linear Transformations
8.5 Similarity
C H A P T E R 9 Numerical Methods
9.1 LU-Decompositions
9.2 The Power Method
9.3 Comparison of Procedures for Solving Linear Systems
9.4 Singular Value Decomposition
9.5 Application: Data Compression Using Singular Value Decomposition
A P P E N D I X A Working with Proofs
A P P E N D I X B Complex Numbers
Answers to Exercises
Index
Information Provided By: :
