
000 | 00000cam u2200205 a 4500 | |
001 | 000045846708 | |
005 | 20151016161737 | |
008 | 151014s2012 enka b 001 0 eng d | |
010 | ▼a 2012289353 | |
015 | ▼a GBB254843 ▼2 bnb | |
020 | ▼a 9781107096394 (hbk.) | |
020 | ▼a 1107096391 (hbk.) | |
020 | ▼a 9781107422223 (pbk.) | |
020 | ▼a 1107422221 (pbk.) | |
035 | ▼a (KERIS)REF000017048666 | |
040 | ▼a UKMGB ▼b eng ▼c UKMGB ▼d BTCTA ▼d OCLCO ▼d BDX ▼d YDXCP ▼d CDX ▼d ZWZ ▼d EYM ▼d TEF ▼d JHE ▼d MUU ▼d DLC ▼d 211009 | |
050 | 0 0 | ▼a Q325.5 ▼b .F53 2012 |
082 | 0 4 | ▼a 006.31 ▼2 23 |
084 | ▼a 006.31 ▼2 DDCK | |
090 | ▼a 006.31 ▼b F571m | |
100 | 1 | ▼a Flach, Peter A. |
245 | 1 0 | ▼a Machine learning : ▼b the art and science of algorithms that make sense of data / ▼c Peter Flach. |
260 | ▼a Cambridge ; ▼a New York : ▼b Cambridge University Press, ▼c 2012. | |
300 | ▼a xvii, 396 p. : ▼b col. ill. ; ▼c 25 cm. | |
504 | ▼a Includes bibliographical references (p. 367-381) and index. | |
505 | 0 0 | ▼g 1. ▼t The ingredients of machine learning -- ▼g 2. ▼t Binary classification and related tasks -- ▼g 3. ▼t Beyond binary classification -- ▼g 4. ▼t Concept learning -- ▼g 5. ▼t Tree models -- ▼g 6. ▼t Rule models -- ▼g 7. ▼t Linear models -- ▼g 8. ▼t Distance-based models -- ▼g 9. ▼t Probabilistic models -- ▼g 10. ▼t Features -- ▼g 11. ▼t Model ensembles -- ▼g 12. ▼t Machine learning experiments -- ▼g Epilogue: ▼t where to go from here. |
520 | 3 | ▼a 'Machine Learning' brings together all the state-of-the-art methods for making sense of data. With hundreds of worked examples and explanatory figures, it explains the principles behind these methods in an intuitive yet precise manner and will appeal to novice and experienced readers alike. |
650 | 0 | ▼a Machine learning ▼v Textbooks. |
945 | ▼a KLPA |
소장정보
No. | 소장처 | 청구기호 | 등록번호 | 도서상태 | 반납예정일 | 예약 | 서비스 |
---|---|---|---|---|---|---|---|
No. 1 | 소장처 과학도서관/Sci-Info(2층서고)/ | 청구기호 006.31 F571m | 등록번호 121234395 | 도서상태 대출가능 | 반납예정일 | 예약 | 서비스 |
컨텐츠정보
목차
Prologue: a machine learning sampler; 1. The ingredients of machine learning; 2. Binary classification and related tasks; 3. Beyond binary classification; 4. Concept learning; 5. Tree models; 6. Rule models; 7. Linear models; 8. Distance-based models; 9. Probabilistic models; 10. Features; 11. In brief: model ensembles; 12. In brief: machine learning experiments; Epilogue: where to go from here; Important points to remember; Bibliography; Index.
정보제공 :
