HOME > 상세정보

상세정보

Data smart : using data science to transform information into insight

Data smart : using data science to transform information into insight (6회 대출)

자료유형
단행본
개인저자
Foreman, John W.
서명 / 저자사항
Data smart : using data science to transform information into insight / John W. Foreman.
발행사항
Hoboken, New Jersey :   John Wiley & Sons,   c2014.  
형태사항
xx, 409 p. : ill. ; 24 cm.
ISBN
9781118661468 (pbk.) 111866146X (pbk.) 9781118661482 9781118839867
요약
"Data Science gets thrown around in the press like it's magic. Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions. But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope. Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet."--
일반주기
Includes index.  
내용주기
Everything you ever needed to know about spreadsheets but were too afraid to ask -- Cluster analysis part I : using K-means to segment your customer base -- Naïve Bayes and the incredible lightness of being an idiot -- Optimization modeling : because that "fresh squeezed" orange juice ain't gonna blend itself -- Cluster analysis part II : network graphs and community detection -- The granddaddy of supervised artificial intelligence : regression -- Ensemble models : a whole lot of bad pizza -- Forecasting : breathe easy; you can't win -- Outlier detection : just because they're odd doesn't mean they're unimportant -- Moving from spreadsheets into R -- Conclusion.
일반주제명
Data mining.
000 00000cam u2200205 a 4500
001 000045843323
005 20160118103651
008 150909s2014 njua 001 0 eng d
010 ▼a 2013946768
015 ▼a GBB382613 ▼2 bnb
020 ▼a 9781118661468 (pbk.)
020 ▼a 111866146X (pbk.)
020 ▼a 9781118661482
020 ▼a 9781118839867
035 ▼a (KERIS)REF000017834063
040 ▼a UKMGB ▼b eng ▼c UKMGB ▼e rda ▼d OCLCO ▼d YDXCP ▼d BTCTA ▼d CGP ▼d BAL ▼d TXI ▼d WAU ▼d LTSCA ▼d NQB ▼d WEX ▼d OCLCF ▼d OCLCQ ▼d GZT ▼d CDX ▼d DLC ▼d 211009
050 0 0 ▼a QA76.9.D343 ▼b F67 2014
082 0 4 ▼a 006.31 ▼2 23
084 ▼a 006.31 ▼2 DDCK
090 ▼a 006.31 ▼b F715d
100 1 ▼a Foreman, John W.
245 1 0 ▼a Data smart : ▼b using data science to transform information into insight / ▼c John W. Foreman.
260 ▼a Hoboken, New Jersey : ▼b John Wiley & Sons, ▼c c2014.
300 ▼a xx, 409 p. : ▼b ill. ; ▼c 24 cm.
500 ▼a Includes index.
505 0 0 ▼t Everything you ever needed to know about spreadsheets but were too afraid to ask -- ▼t Cluster analysis part I : using K-means to segment your customer base -- ▼t Naïve Bayes and the incredible lightness of being an idiot -- ▼t Optimization modeling : because that "fresh squeezed" orange juice ain't gonna blend itself -- ▼t Cluster analysis part II : network graphs and community detection -- ▼t The granddaddy of supervised artificial intelligence : regression -- ▼t Ensemble models : a whole lot of bad pizza -- ▼t Forecasting : breathe easy; you can't win -- ▼t Outlier detection : just because they're odd doesn't mean they're unimportant -- ▼t Moving from spreadsheets into R -- ▼t Conclusion.
520 ▼a "Data Science gets thrown around in the press like it's magic. Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions. But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope. Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet."-- ▼c Publisher's description.
650 0 ▼a Data mining.
945 ▼a KLPA

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 중앙도서관/서고6층/ 청구기호 006.31 F715d 등록번호 111741594 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 2 소장처 과학도서관/Sci-Info(2층서고)/ 청구기호 006.31 F715d 등록번호 121235365 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 중앙도서관/서고6층/ 청구기호 006.31 F715d 등록번호 111741594 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/Sci-Info(2층서고)/ 청구기호 006.31 F715d 등록번호 121235365 도서상태 대출가능 반납예정일 예약 서비스 B M

컨텐츠정보

저자소개

존 포먼(지은이)

메일침프닷컴(MailChimp.com)의 수석 데이터 과학자다. 회복 경영 컨설턴트로 코카콜라, 로열캐리비언, 인터컨티넨털 호텔과 같은 대규모 사업체와 DoD, IRD, DHS, FBI와 같은 정부기관에서 데이터 분석 프로젝트를 해왔다. 사업체에서 데이터 분석 솔루션을 구축하는 방안이나 어려움들에 대해 자주 강연을 한다. John-Foreman.com을 보면 인근에서 열릴 강연 등을 찾을 수 있다. 데이터 작업을 하지 않을 때는 하이킹을 하거나 텔레비전을 보고, 온갖 맛없는 음식 등을 먹고, 세 명의 아들을 키운다.

정보제공 : Aladin

목차

Introduction xiii 

1 Everything You Ever Needed to Know about Spreadsheets but Were Too Afraid to Ask 1 

2 Cluster Analysis Part I: Using K-Means to Segment Your Customer Base 29 

3 Naive Bayes and the Incredible Lightness of Being an Idiot 77 

4 Optimization Modeling: Because That "Fresh Squeezed" Orange Juice Ain''t Gonna Blend Itself 101 

5 Cluster Analysis Part II: Network Graphs and Community Detection 155 

6 The Granddaddy of Supervised Artificial Intelligence--Regression 205 

7 Ensemble Models: A Whole Lot of Bad Pizza 251 

8 Forecasting: Breathe Easy; You Can''t Win 285 

9 Outlier Detection: Just Because They''re Odd Doesn''t Mean They''re Unimportant 335 

10 Moving from Spreadsheets into R 361 

Conclusion 395 

Index 401

관련분야 신착자료

Baumer, Benjamin (2021)