HOME > 상세정보

상세정보

Data structures and algorithms in Python

Data structures and algorithms in Python (8회 대출)

자료유형
단행본
개인저자
Goodrich, Michael T. Tamassia, Roberto, 1960-. Goldwasser, Michael H., 1969-.
서명 / 저자사항
Data structures and algorithms in Python / Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser.
발행사항
Hoboken, NJ :   Wiley,   2013.  
형태사항
xix, 748 p. : ill. ; 25 cm.
ISBN
9781118290279 (cloth : acid-free paper)
서지주기
Includes bibliographical references (p. [732]-736) and index.
일반주제명
Python (Computer program language). Data structures (Computer science). Computer algorithms.
000 00000cam u2200205 a 4500
001 000045819933
005 20150115132333
008 150114s2013 njua b 001 0 eng d
010 ▼a 2012048005
020 ▼a 9781118290279 (cloth : acid-free paper)
035 ▼a (KERIS)REF000017061273
040 ▼a DLC ▼b eng ▼c DLC ▼d DLC ▼e rda ▼d 211009
050 0 0 ▼a QA76.73.P98 ▼b G66 2013
082 0 0 ▼a 005.13/3 ▼2 23
084 ▼a 005.133 ▼2 DDCK
090 ▼a 005.133 ▼b G655dp
100 1 ▼a Goodrich, Michael T.
245 1 0 ▼a Data structures and algorithms in Python / ▼c Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser.
260 ▼a Hoboken, NJ : ▼b Wiley, ▼c 2013.
300 ▼a xix, 748 p. : ▼b ill. ; ▼c 25 cm.
504 ▼a Includes bibliographical references (p. [732]-736) and index.
650 0 ▼a Python (Computer program language).
650 0 ▼a Data structures (Computer science).
650 0 ▼a Computer algorithms.
700 1 ▼a Tamassia, Roberto, ▼d 1960-.
700 1 ▼a Goldwasser, Michael H., ▼d 1969-.
945 ▼a KLPA

소장정보

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/Sci-Info(2층서고)/ 청구기호 005.133 G655dp 등록번호 121231787 도서상태 대출가능 반납예정일 예약 서비스 B M

컨텐츠정보

저자소개

마이클 T. 굿리치(지은이)

Department of Computer Science University of California, Irvine

Roberto Tamassia(지은이)

Department of Computer Science Brown University

정보제공 : Aladin

목차

Preface v

1 Python Primer 1

1.1 Python Overview.2

1.2 Objects in Python.4

1.3 Expressions, Operators, and Precedence.12

1.4 Control Flow 18

1.5 Functions 23

1.6 Simple Input and Output 30

1.7 Exception Handling.33

1.8 Iterators and Generators 39

1.9 Additional Python Conveniences 42

1.10 Scopes and Namespaces 46

1.11 Modules and the Import Statement 48

1.12 Exercises 51

2 Object-Oriented Programming 56

2.1 Goals, Principles, and Patterns 57

2.2 Software Development 62

2.3 Class Definitions.69

2.4 Inheritance 82

2.5 Namespaces and Object-Orientation. 96

2.6 Shallow and Deep Copying101

2.7 Exercises 103

3 Algorithm Analysis 109

3.1 Experimental Studies 111

3.1.1 Moving Beyond Experimental Analysis.113

3.2 The Seven Functions Used in This Book.115

3.3 Asymptotic Analysis.123

3.4 Simple Justification Techniques 137

3.5 Exercises 141

4 Recursion 148

4.1 Illustrative Examples 150

4.2 Analyzing Recursive Algorithms 161

4.3 Recursion Run Amok 165

4.4 Further Examples of Recursion169

4.5 Designing Recursive Algorithms 177

4.6 Eliminating Tail Recursion178

4.7 Exercises 180

5 Array-Based Sequences 183

5.1 Python’s Sequence Types 184

5.2 Low-Level Arrays.185

5.3 Dynamic Arrays and Amortization 192

5.4 Efficiency of Python’s Sequence Types. 202

5.5 Using Array-Based Sequences210

5.6 Multidimensional Data Sets219

5.7 Exercises 224

6 Stacks, Queues, and Deques 228

6.1 Stacks.229

6.2 Queues.239

6.3 Double-Ended Queues 247

6.4 Exercises 250

7 Linked Lists 255

7.1 Singly Linked Lists.256

7.2 Circularly Linked Lists 266

7.3 Doubly Linked Lists.270

7.4 The Positional List ADT 277

7.5 Sorting a Positional List 285

7.6 Case Study: Maintaining Access Frequencies 286

7.7 Link-Based vs Array-Based Sequences. 292

7.8 Exercises 294

8 Trees 299

8.1 General Trees 300

8.2 Binary Trees 311

8.3 Implementing Trees.317

8.4 Tree Traversal Algorithms328

8.5 Case Study: An Expression Tree 348

8.6 Exercises 352

9 Priority Queues 362

9.1 The Priority Queue Abstract Data Type.363

9.2 Implementing a Priority Queue 365

9.3 Heaps.370

9.4 Sorting with a Priority Queue385

9.5 Adaptable Priority Queues390

9.6 Exercises 395

10 Maps, Hash Tables, and Skip Lists 401

10.1 Maps and Dictionaries 402

10.2 Hash Tables 410

10.3 Sorted Maps 427

10.4 Skip Lists 437

10.5 Sets, Multisets, and Multimaps 446

10.6 Exercises 452

11 Search Trees 459

11.1 Binary Search Trees.460

11.2 Balanced Search Trees 475

11.2.1 Python Framework for Balancing Search Trees 478

11.3 AVL Trees 481

11.4 Splay Trees 490

11.5 (2,4) Trees 502

11.6 Red-Black Trees.512

11.7 Exercises 528

12 Sorting and Selection 536

12.1 Why Study Sorting Algorithms? 537

12.2 Merge-Sort 538

12.3 Quick-Sort 550

12.4 Studying Sorting through an Algorithmic Lens 562

12.5 Comparing Sorting Algorithms567

12.6 Python’s Built-In Sorting Functions 569

12.7 Selection 571

12.8 Exercises 574

13 Text Processing 581

13.1 Abundance of Digitized Text582

13.2 Pattern-Matching Algorithms584

13.3 Dynamic Programming 594

13.4 Text Compression and the Greedy Method.601

13.5 Tries.604

13.6 Exercises 613

14 Graph Algorithms 619

14.1 Graphs.620

14.2 Data Structures for Graphs627

14.3 Graph Traversals.638

14.4 Transitive Closure.651

14.5 Directed Acyclic Graphs 655

14.6 Shortest Paths659

14.7 Minimum Spanning Trees 670

14.8 Exercises 686

15 Memory Management and B-Trees 697

15.1 Memory Management 698

15.2 Memory Hierarchies and Caching 705

15.3 External Searching and B-Trees 711

15.4 External-Memory Sorting 715

15.5 Exercises 717

A Character Strings in Python 721

B Useful Mathematical Facts 725

Bibliography 732

Index 737


정보제공 : Aladin

관련분야 신착자료