
000 | 00840camuu2200289 a 4500 | |
001 | 000045733714 | |
005 | 20130107144320 | |
008 | 850619s1986 nyua 001 0 eng d | |
010 | ▼a 85014758 | |
020 | ▼a 0387962050 | |
020 | ▼a 3540962050 | |
020 | ▼a 9624300615 | |
020 | ▼a 9783540780601 | |
035 | ▼a (KERIS)BIB000008412988 | |
040 | ▼a 211019 ▼d 211046 ▼d 241050 ▼d 244002 | |
082 | 0 0 | ▼a 512.5 ▼2 23 |
084 | ▼a 512.5 ▼2 DDCK | |
090 | ▼a 512.5 ▼b L271i2 | |
100 | 1 | ▼a Lang, Serge, ▼d 1927-. |
245 | 1 0 | ▼a Introduction to linear algebra / ▼c Serge Lang. |
250 | ▼a 2nd ed. | |
260 | ▼a New York : ▼b Springer-Verlag, ▼c c1986. | |
300 | ▼a viii, 293 p. : ▼b ill. ; ▼c 24 cm. | |
440 | 0 | ▼a Undergraduate texts in mathematics |
500 | ▼a Includes index. | |
650 | 0 | ▼a Algebras, Linear. |
Holdings Information
No. | Location | Call Number | Accession No. | Availability | Due Date | Make a Reservation | Service |
---|---|---|---|---|---|---|---|
No. 1 | Location Sejong Academic Information Center/Science & Technology/ | Call Number 512.5 L271i2 | Accession No. 151314313 | Availability Available | Due Date | Make a Reservation | Service |
Contents information
Table of Contents
CONTENTS CHAPTER Ⅰ Vectors = 1 1. Definition of Points in Space = 1 2. Located Vectors = 9 3. Scalar Product = 12 4. The Norm of a Vector = 15 5. Parametric Lines = 30 6. Planes = 34 CHAPTER Ⅱ Matrices and Linear Equations = 42 1. Matrices = 43 2. Multiplication of Matrices = 47 3. Homogeneous Linear Equations and Elimination = 64 4. Row Operations and Gauss Elimination = 70 5. Row Operations and Elementary Matrices = 77 6. Linear Combinations = 85 CHAPTER Ⅲ Vector Spaces = 88 1. Definitions = 88 2. Linear Combinations = 93 3. Convex Sets = 99 4. Linear Independence = 101 5. Dimension = 118 6. The Rank of a Matrix = 118 CHAPTER Ⅳ Linear Mappings = 123 1. Mappings = 123 2. Linear Mappings = 127 3. The Kernel and Image of a Linear Map = 136 4. The Rank and Linear Equations Again = 144 5. The Matrix Associated with a Linear Map = 150 Appendix : Change of Bases = 154 CHAPTER Ⅴ Composition and Inverse Mappings = 158 1. Composition of Linear Maps = 158 2. Inverses = 164 CHAPTER Ⅵ Scalar Products and Orthogonality = 171 1. Scalar Products = 171 2. Orthogonal Bases = 180 3. Bilinear Maps and Matrices = 190 CHAPTER Ⅶ Determinants = 195 1. Determinants of Order 2 = 195 2. 3 × 3 and n × n Determinants = 200 3. The Rank of a Matrix and Subdeterminants = 210 4. Cramer's Rule = 214 5. Inverse of a Matrix = 217 6. Determinants as Area and Volume = 221 CHAPTER Ⅷ Eigenvectors and Eigenvalues = 233 1. Eigenvectors and Eigenvalues = 233 2. The Characteristic Polynomial = 238 3. Eigenvalues and Eigenvectors of Symmetric Matrices = 250 4. Diagonalization of a Symmetric Linear Map = 255 Appendix. Complex Numbers = 260 Answers to Exercises = 266 Index = 289