> Detail View

# Detail View

## Introduction to linear algebra 2nd ed (Loan 12 times)

Material type
단행본
Personal Author
Lang, Serge, 1927-.
Title Statement
Introduction to linear algebra / Serge Lang.
판사항
2nd ed.
Publication, Distribution, etc
New York :   Springer-Verlag,   c1986.
Physical Medium
viii, 293 p. : ill. ; 24 cm.
Series Statement
ISBN
0387962050 3540962050 9624300615 9783540780601
General Note
Includes index.
Algebras, Linear.
 000 00840camuu2200289 a 4500 001 000045733714 005 20130107144320 008 850619s1986 nyua 001 0 eng d 010 ▼a 85014758 020 ▼a 0387962050 020 ▼a 3540962050 020 ▼a 9624300615 020 ▼a 9783540780601 035 ▼a (KERIS)BIB000008412988 040 ▼a 211019 ▼d 211046 ▼d 241050 ▼d 244002 082 0 0 ▼a 512.5 ▼2 23 084 ▼a 512.5 ▼2 DDCK 090 ▼a 512.5 ▼b L271i2 100 1 ▼a Lang, Serge, ▼d 1927-. 245 1 0 ▼a Introduction to linear algebra / ▼c Serge Lang. 250 ▼a 2nd ed. 260 ▼a New York : ▼b Springer-Verlag, ▼c c1986. 300 ▼a viii, 293 p. : ▼b ill. ; ▼c 24 cm. 440 0 ▼a Undergraduate texts in mathematics 500 ▼a Includes index. 650 0 ▼a Algebras, Linear.

### Holdings Information

No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Call Number 512.5 L271i2 Accession No. 151314313 Availability Available Due Date Make a Reservation Service

### Contents information

```
CONTENTS
CHAPTER Ⅰ Vectors = 1
1. Definition of Points in Space = 1
2. Located Vectors = 9
3. Scalar Product = 12
4. The Norm of a Vector = 15
5. Parametric Lines = 30
6. Planes = 34
CHAPTER Ⅱ Matrices and Linear Equations = 42
1. Matrices = 43
2. Multiplication of Matrices = 47
3. Homogeneous Linear Equations and Elimination = 64
4. Row Operations and Gauss Elimination = 70
5. Row Operations and Elementary Matrices = 77
6. Linear Combinations = 85
CHAPTER Ⅲ Vector Spaces = 88
1. Definitions = 88
2. Linear Combinations = 93
3. Convex Sets = 99
4. Linear Independence = 101
5. Dimension = 118
6. The Rank of a Matrix = 118
CHAPTER Ⅳ Linear Mappings = 123
1. Mappings = 123
2. Linear Mappings = 127
3. The Kernel and Image of a Linear Map = 136
4. The Rank and Linear Equations Again = 144
5. The Matrix Associated with a Linear Map = 150
Appendix : Change of Bases = 154
CHAPTER Ⅴ Composition and Inverse Mappings = 158
1. Composition of Linear Maps = 158
2. Inverses = 164
CHAPTER Ⅵ Scalar Products and Orthogonality = 171
1. Scalar Products = 171
2. Orthogonal Bases = 180
3. Bilinear Maps and Matrices = 190
CHAPTER Ⅶ Determinants = 195
1. Determinants of Order 2 = 195
2. 3 × 3 and n × n Determinants = 200
3. The Rank of a Matrix and Subdeterminants = 210
4. Cramer's Rule = 214
5. Inverse of a Matrix = 217
6. Determinants as Area and Volume = 221
CHAPTER Ⅷ Eigenvectors and Eigenvalues = 233
1. Eigenvectors and Eigenvalues = 233
2. The Characteristic Polynomial = 238
3. Eigenvalues and Eigenvectors of Symmetric Matrices = 250
4. Diagonalization of a Symmetric Linear Map = 255
Appendix. Complex Numbers = 260
Index = 289

```

김대수 (2022)

민만식 (2022)

장철원 (2021)