
000 | 01036camuu22003014a 4500 | |
001 | 000045564004 | |
005 | 20091208103729 | |
008 | 021211s2003 enk b 000 0 eng | |
010 | ▼a 2002041538 | |
020 | ▼a 0521808316 (hardback) | |
020 | ▼a 9780521808316 (hardback) | |
035 | ▼a (KERIS)REF000006942327 | |
040 | ▼a DLC ▼c DLC ▼d DLC ▼d 211009 | |
042 | ▼a pcc | |
050 | 0 0 | ▼a QA214 ▼b .G35 2003 |
082 | 0 0 | ▼a 512/.3 ▼2 22 |
090 | ▼a 512.3 ▼b G1782 | |
245 | 0 0 | ▼a Galois groups and fundamental groups / ▼c edited by Leila Schneps. |
260 | ▼a Cambridge, U.K. ; ▼a New York : ▼b Cambridge University Press , ▼c c2003. | |
300 | ▼a xiv, 467 p. ; ▼c 25 cm. | |
490 | 1 | ▼a Mathematical Sciences Research Institute publications ; ▼v 41 |
504 | ▼a Includes bibliographical references. | |
650 | 0 | ▼a Galois theory. |
650 | 0 | ▼a Fundamental groups (Mathematics) |
700 | 1 | ▼a Schneps, Leila. |
830 | 0 | ▼a Mathematical Sciences Research Institute publications ; ▼v 41. |
945 | ▼a KINS |
Holdings Information
No. | Location | Call Number | Accession No. | Availability | Due Date | Make a Reservation | Service |
---|---|---|---|---|---|---|---|
No. 1 | Location Science & Engineering Library/Sci-Info(Stacks2)/ | Call Number 512.3 G1782 | Accession No. 121187653 | Availability Available | Due Date | Make a Reservation | Service |
Contents information
Table of Contents
Introduction; 1. Monodromy groups of coverings of curves Robert Guralnik; 2. On the tame fundamental groups of curves over algebraically closed fields of characteristic > 0 Akio Tamagawa; 3. On the specialization homomorphism of fundamental groups of curves in positive characteristic Florian Pop and Mohamed Saidi; 4. Topics surrounding the anabelian geometry of hyperbolic curves Shinichi Mochizuki; 5. Monodromy of elliptic surfaces Fedor Bogomolov and Yuri Tschinkel; 6. Tannakian fundamental groups associated to Galois groups Richard Hain and Makoto Matsumoto; 7. Special loci in moduli spaces of curves Leila Schneps; 8. Cellulation of compactified Hurwitz spaces Michel Imbert; 9. Patching and Galois theory David Harbater; 10. Constructive differential Galois theory B. Heinrich Matzat and Marius van der Put.
Information Provided By: :
