HOME > Detail View

Detail View

Local cohomology : an algebraic introduction with geometric applications

Local cohomology : an algebraic introduction with geometric applications (Loan 3 times)

Material type
단행본
Personal Author
Brodmann, M. P. (Markus P.) , 1945-. Sharp, R. Y.
Title Statement
Local cohomology : an algebraic introduction with geometric applications / M.P. Brodmann, R.Y. Sharp.
Publication, Distribution, etc
Cambridge, U.K. ;   New York :   Cambridge University Press ,   1998.  
Physical Medium
xv, 416 p. : ill. ; 24 cm.
Series Statement
Cambridge studies in advanced mathematics ; 60
ISBN
0521372860 (hardbound) 9780521372862
Bibliography, Etc. Note
Includes bibliographical references and index.
Subject Added Entry-Topical Term
Algebra, Homological. Sheaf theory. Commutative algebra.
000 01052camuu2200301 a 4500
001 000045442152
005 20080521105012
008 970724s1998 enka b 001 0 eng
010 ▼a 97029059
020 ▼a 0521372860 (hardbound)
020 ▼a 9780521372862
035 ▼a (KERIS)REF000000016542
040 ▼a DLC ▼c DLC ▼d DLC ▼d 211009
050 0 0 ▼a QA169 ▼b .B745 1998
082 0 0 ▼a 512/.55 ▼2 22
090 ▼a 512.55 ▼b B864L
100 1 ▼a Brodmann, M. P. ▼q (Markus P.) , ▼d 1945-.
245 1 0 ▼a Local cohomology : ▼b an algebraic introduction with geometric applications / ▼c M.P. Brodmann, R.Y. Sharp.
260 ▼a Cambridge, U.K. ; ▼a New York : ▼b Cambridge University Press , ▼c 1998.
300 ▼a xv, 416 p. : ▼b ill. ; ▼c 24 cm.
440 0 ▼a Cambridge studies in advanced mathematics ; ▼v 60
504 ▼a Includes bibliographical references and index.
650 0 ▼a Algebra, Homological.
650 0 ▼a Sheaf theory.
650 0 ▼a Commutative algebra.
700 1 ▼a Sharp, R. Y.
945 ▼a KINS

Holdings Information

No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Science & Engineering Library/Sci-Info(Stacks2)/ Call Number 512.55 B864L Accession No. 121170949 Availability Available Due Date Make a Reservation Service B M

Contents information

Table of Contents

Preface; Notation and conventions; 1. The local cohomology functors; 2. Torsion modules and ideal transforms; 3. The Mayer?Vietoris Sequence; 4. Change of rings; 5. Other approaches; 6. Fundamental vanishing theorems; 7. Artinian local cohomology modules; 8. The Lichtenbaum?Hartshorne theorem; 9. The Annihilator and Finiteness Theorems; 10. Matlis duality; 11. Local duality; 12. Foundations in the graded case; 13. Graded versions of basic theorems; 14. Links with projective varieties; 15. Castelnuovo regularity; 16. Bounds of diagonal type; 17. Hilbert polynomials; 18. Applications to reductions of ideals; 19. Connectivity in algebraic varieties; 20. Links with sheaf cohomology; Bibliography; Index.


Information Provided By: : Aladin

New Arrivals Books in Related Fields