
000 | 01751camuu2200337 a 4500 | |
001 | 000045419529 | |
005 | 20110303185529 | |
008 | 070601s2008 njua b 001 0 eng | |
010 | ▼a 2007023226 | |
020 | ▼a 0471751561 | |
020 | ▼a 9780471751564 (cloth) | |
035 | ▼a (KERIS)REF000013120430 | |
040 | ▼a DLC ▼c DLC ▼d DLC ▼d 211009 | |
050 | 0 0 | ▼a QA184.2 ▼b .L38 2008 |
082 | 0 0 | ▼a 512/.5 ▼2 22 |
084 | ▼a 512.5 ▼2 DDCK | |
090 | ▼a 512.5 ▼b L4252L2 | |
100 | 1 | ▼a Lax, Peter D. |
245 | 1 0 | ▼a Linear algebra and its applications / ▼c Peter D. Lax. |
250 | ▼a 2nd ed. | |
260 | ▼a Hoboken, N.J. : ▼b John Wiley, ▼c c2008. | |
300 | ▼a xv, 376 p. : ▼b ill. ; ▼c 25 cm. | |
490 | 1 | ▼a Pure and applied mathematics. A Wiley-Interscience of texts, monographs and tracts |
500 | ▼a Previous ed.: Linear algebra. New York : Wiley, c1997. | |
504 | ▼a Includes bibliographical references and index. | |
505 | 0 | ▼a Fundamentals -- Duality -- Linear mappings -- Matrices -- Determinant and trace -- Spectral theory -- Euclidean structure -- Spectral theory of self-adjoint mappings -- Of a Euclidean space into itself -- Calculus of vector and matrix-valued functions -- Matrix inequalities -- Kinematics and dynamics -- Convexity -- The duality theorem -- Normed linear spaces -- Linear mappings between normed linear spaces -- Positive matrices -- How to solve systems of linear equations -- How to calculate the eigenvalues of self-adjoint matrices -- Solutions of selected exercises. |
650 | 0 | ▼a Algebras, Linear. |
700 | 1 | ▼a Lax, Peter D. ▼t Linear algebra. |
830 | 0 | ▼a Pure and applied mathematics. ▼p A Wiley-Interscience of texts, monographs and tracts. |
945 | ▼a KINS |
소장정보
No. | 소장처 | 청구기호 | 등록번호 | 도서상태 | 반납예정일 | 예약 | 서비스 |
---|---|---|---|---|---|---|---|
No. 1 | 소장처 과학도서관/Sci-Info(2층서고)/ | 청구기호 512.5 L4252L2 | 등록번호 121164303 | 도서상태 대출가능 | 반납예정일 | 예약 | 서비스 |
No. 2 | 소장처 과학도서관/Sci-Info(2층서고)/ | 청구기호 512.5 L4252L2 | 등록번호 121206509 | 도서상태 대출가능 | 반납예정일 | 예약 | 서비스 |
컨텐츠정보
목차
Preface.
Preface to the First Edition.
1. Fundamentals.
2. Duality.
3. Linear Mappings.
4. Matrices.
5. Determinant and Trace.
6. Spectral Theory.
7. Euclidean Structure.
8. Spectral Theory of Self-Adjoint Mappings.
9. Calculus of Vector- and Matrix-Valued Functions.
10. Matrix Inequalities.
11. Kinematics and Dynamics.
12. Convexity.
13. The Duality Theorem.
14. Normed Linear Spaces.
15. Linear Mappings Between Normed Linear Spaces.
16. Positive Matrices.
17. How to Solve Systems of Linear Equations.
18. How to Calculate the Eigenvalues of Self-Adjoint Matrices.
19. Solutions.
Bibliography.
Appendix 1. Special Determinants.
Appendix 2. The Pfaffian.
Appendix 3. Symplectic Matrices.
Appendix 4. Tensor Product.
Appendix 5. Lattices.
Appendix 6. Fast Matrix Multiplication.
Appendix 7. Gershgorin's Theorem.
Appendix 8. The Multiplicity of Eigenvalues.
Appendix 9. The Fast Fourier Transform.
Appendix 10. The Spectral Radius.
Appendix 11. The Lorentz Group.
Appendix 12. Compactness of the Unit Ball.
Appendix 13. A Characterization of Commutators.
Appendix 14. Liapunov's Theorem.
Appendix 15. The Jordan Canonical Form.
Appendix 16. Numerical Range.
Index.
정보제공 :
