
000 | 01359camuu2200397 a 4500 | |
001 | 000045414550 | |
005 | 20080115112334 | |
008 | 070806s2008 nyua b 001 0 eng c | |
010 | ▼a 2007930472 | |
015 | ▼a GBA761710 ▼2 bnb | |
016 | 7 | ▼a 013810881 ▼2 Uk |
020 | ▼a 9780387712536 (hbk.) | |
020 | ▼a 0387712534 (hbk.) | |
029 | 1 | ▼a YDXCP ▼b 2544693 |
029 | 1 | ▼a OHX ▼b har070030471 |
035 | ▼a (OCoLC)141385222 | |
040 | ▼a UKM ▼c UKM ▼d YDX ▼d BTCTA ▼d BAKER ▼d OHX ▼d YDXCP ▼d COD ▼d KUB ▼d 211009 | |
042 | ▼a pcc | |
049 | ▼a KUBA | |
050 | 4 | ▼a QA159 ▼b .F55 2008 |
082 | 0 4 | ▼a 512.0071 ▼2 22 |
090 | ▼a 512.0071 ▼b F487e | |
100 | 1 | ▼a Filloy, Eugenio. |
245 | 1 0 | ▼a Educational algebra : ▼b a theoretical and empirical approach / ▼c Eugenio Filloy, Luis Puig, and Teresa Rojano (authors). |
260 | ▼a New York ; ▼a London : ▼b Springer , ▼c c2008. | |
300 | ▼a xiii, 292 p. : ▼b ill. ; ▼c 25 cm. | |
440 | 0 | ▼a Mathematics education library ; ▼v v. 43 |
504 | ▼a Includes bibliographical references (p. [277]-284) and index. | |
650 | 0 | ▼a Algebra ▼x Study and teaching. |
650 | 0 | ▼a Logic, Symbolic and mathematical. |
650 | 0 | ▼a Meaning (Philosophy) |
700 | 1 | ▼a Puig, Luis , ▼d 1948- |
700 | 1 | ▼a Rojano, Teresa. |
945 | ▼a KINS | |
994 | ▼a C0 ▼b KUB |
Holdings Information
No. | Location | Call Number | Accession No. | Availability | Due Date | Make a Reservation | Service |
---|---|---|---|---|---|---|---|
No. 1 | Location Science & Engineering Library/Sci-Info(Stacks2)/ | Call Number 512.0071 F487e | Accession No. 121163969 | Availability Available | Due Date | Make a Reservation | Service |
Contents information
Table of Contents
Local Theoretical Models and Mathematical Sign Systems: A theoretical and methodological framework for experimental observations in educational mathematics.- Mathematics Education and Educational Systems.- Teaching Models.- Cognitive Processes.- Experimental Design.- Mathematical Sign Systems: A theory for interpreting experimental observations.- Concrete Models and Abstractions Processes: Teaching to operate the unknown.-Solving Problems with a "Just Acquired" Algebraic Syntax.- Cognitive Tendencies and Abstraction Processes in the Learning of Algebra (and Geometry).- Solving Arithmetic/Algebraic Problems.- Historical Analysis of Algebraic Ideas.
Information Provided By: :
