HOME > 상세정보

상세정보

Computational intelligence : an introduction 2nd ed

Computational intelligence : an introduction 2nd ed (6회 대출)

자료유형
단행본
개인저자
Engelbrecht, Andries P.
서명 / 저자사항
Computational intelligence : an introduction / Andries P. Engelbrecht.
판사항
2nd ed.
발행사항
Chichester, England ;   Hoboken, NJ :   John Wiley & Sons ,   c2007.  
형태사항
xxx, 597 p. : ill. ; 25 cm.
ISBN
0470035617 (hbk.) 9780470035610 (hbk.)
일반주기
Includes index.  
일반주제명
Computational intelligence. Neural networks (Computer science) Evolutionary programming (Computer science)
000 00991camuu2200289 a 4500
001 000045414082
005 20080114161053
008 070518s2007 enka 001 0 eng
010 ▼a 2007021101
020 ▼a 0470035617 (hbk.)
020 ▼a 9780470035610 (hbk.)
035 ▼a (KERIS)REF000013101081
040 ▼a DLC ▼c DLC ▼d BTCTA ▼d BAKER ▼d BWKUK ▼d YDXCP ▼d DLC ▼d 211009
050 0 0 ▼a Q342 ▼b .E54 2007
082 0 0 ▼a 006.3 ▼2 22
090 ▼a 006.3 ▼b E57c2
100 1 ▼a Engelbrecht, Andries P.
245 1 0 ▼a Computational intelligence : ▼b an introduction / ▼c Andries P. Engelbrecht.
250 ▼a 2nd ed.
260 ▼a Chichester, England ; ▼a Hoboken, NJ : ▼b John Wiley & Sons , ▼c c2007.
300 ▼a xxx, 597 p. : ▼b ill. ; ▼c 25 cm.
500 ▼a Includes index.
650 0 ▼a Computational intelligence.
650 0 ▼a Neural networks (Computer science)
650 0 ▼a Evolutionary programming (Computer science)
945 ▼a KINS

소장정보

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/Sci-Info(2층서고)/ 청구기호 006.3 E57c2 등록번호 121163740 도서상태 대출가능 반납예정일 예약 서비스 B M

컨텐츠정보

목차

Figures.

Tables.

Algorithms.

Preface.

Part I INTRODUCTION.

1 Introduction to Computational Intelligence.

1.1 Computational Intelligence Paradigms.

1.2 Short History.

1.3 Assignments.

Part II ARTIFICIAL NEURAL NETWORKS.

2 The Artificial Neuron.

2.1 Calculating the Net Input Signal.

2.2 Activation Functions.

2.3 Artificial Neuron Geometry.

2.4 Artificial Neuron Learning.

2.5 Assignments.

3 Supervised Learning Neural Networks.

3.1 Neural Network Types.

3.2 Supervised Learning Rules.

3.3 Functioning of Hidden Units.

3.4 Ensemble Neural Networks.

3.5 Assignments.

4 Unsupervised Learning Neural Networks.

4.1 Background.

4.2 Hebbian Learning Rule.

4.3 Principal Component Learning Rule.

4.4 Learning Vector Quantizer-I.

4.5 Self-Organizing Feature Maps.

4.6 Assignments.

5 Radial Basis Function Networks.

5.1 Learning Vector Quantizer-II.

5.2 Radial Basis Function Neural Networks.

5.3 Assignments.

6 Reinforcement Learning.

6.1 Learning through Awards.

6.2 Model-Free Reinforcement LearningModel.

6.3 Neural Networks and Reinforcement Learning.

6.4 Assignments.

7 Performance Issues (Supervised Learning).

7.1 PerformanceMeasures.

7.2 Analysis of Performance.

7.3 Performance Factors.

7.4 Assignments.

Part III EVOLUTIONARY COMPUTATION.

8 Introduction to Evolutionary Computation.

8.1 Generic Evolutionary Algorithm.

8.2 Representation – The Chromosome.

8.3 Initial Population.

8.4 Fitness Function.

8.5 Selection.

8.6 Reproduction Operators.

8.7 Stopping Conditions.

8.8 Evolutionary Computation versus Classical Optimization.

8.9 Assignments.

9 Genetic Algorithms.

9.1 Canonical Genetic Algorithm.

9.2 Crossover.

9.3 Mutation.

9.4 Control Parameters.

9.5 Genetic Algorithm Variants.

9.6 Advanced Topics.

9.7 Applications.

9.8 Assignments.

10 Genetic Programming.

10.1 Tree-Based Representation.

10.2 Initial Population.

10.3 Fitness Function.

10.4 Crossover Operators.

10.5 Mutation Operators.

10.6 Building Block Genetic Programming.

10.7 Applications.

10.8 Assignments.

11 Evolutionary Programming.

11.1 Basic Evolutionary Programming.

11.2 Evolutionary Programming Operators.

11.3 Strategy Parameters.

11.4 Evolutionary Programming Implementations.

11.5 Advanced Topics.

11.6 Applications.

11.7 Assignments.

12 Evolution Strategies.

12.1 (1+1)-ES.

12.2 Generic Evolution Strategy Algorithm.

12.3 Strategy Parameters and Self-Adaptation.

12.4 Evolution Strategy Operators.

12.5 Evolution Strategy Variants.

12.6 Advanced Topics.

12.7 Applications of Evolution Strategies.

12.8 Assignments.

13 Differential Evolution.

13.1 Basic Differential Evolution.

13.2 DE/x/y/z.

13.3 Variations to Basic Differential Evolution.

13.4 Differential Evolution for Discrete-Valued Problems.

13.5 Advanced Topics.

13.6 Applications.

13.7 Assignments.

14 Cultural Algorithms.

14.1 Culture and Artificial Culture.

14.2 Basic Cultural Algorithm.

14.3 Belief Space.

14.4 Fuzzy Cultural Algorithm.

14.5 Advanced Topics.

14.6 Applications.

14.7 Assignments.

15 Coevolution.

15.1 Coevolution Types.

15.2 Competitive Coevolution.

15.3 Cooperative Coevolution.

15.4 Assignments.

Part IV COMPUTATIONAL SWARM INTELLIGENCE.

16 Particle Swarm Optimization.

16.1 Basic Particle Swarm Optimization.

16.2 Social Network Structures.

16.3 Basic Variations.

16.4 Basic PSO Parameters.

16.5 Single-Solution Particle SwarmOptimization.

16.6 Advanced Topics.

16.7 Applications.

16.8 Assignments.

17 Ant Algorithms.

17.1 Ant Colony OptimizationMeta-Heuristic.

17.2 Cemetery Organization and Brood Care.

17.3 Division of Labor.

17.4 Advanced Topics.

17.5 Applications.

17.6 Assignments.

Part V ARTIFICIAL IMMUNE SYSTEMS.

18 Natural Immune System.

18.1 Classical View.

18.2 Antibodies and Antigens.

18.3 TheWhite Cells.

18.4 Immunity Types.

18.5 Learning the Antigen Structure.

18.6 The Network Theory.

18.7 The Danger Theory.

18.8 Assignments.

19 Artificial Immune Models.

19.1 Artificial Immune System Algorithm.

19.2 Classical ViewModels.

19.3 Clonal Selection TheoryModels.

19.4 Network TheoryModels.

19.5 Danger TheoryModels.

19.6 Applications and Other AIS models.

19.7 Assignments.

Part VI FUZZY SYSTEMS.

20 Fuzzy Sets.

20.1 Formal Definitions.

20.2 Membership Functions.

20.3 Fuzzy Operators.

20.4 Fuzzy Set Characteristics.

20.5 Fuzziness and Probability.

20.6 Assignments.

21 Fuzzy Logic and Reasoning.

21.1 Fuzzy Logic.

21.2 Fuzzy Inferencing.

21.3 Assignments.

22 Fuzzy Controllers.

22.1 Components of Fuzzy Controllers.

22.2 Fuzzy Controller Types.

22.3 Assignments.

23 Rough Sets.

23.1 Concept of Discernibility.

23.2 Vagueness in Rough Sets.

23.3 Uncertainty in Rough Sets.

23.4 Assignments.

References.

A Optimization Theory.

A.1 Basic Ingredients of Optimization Problems.

A.2 Optimization ProblemClassifications.

A.3 Optima Types.

A.4 OptimizationMethod Classes.

A.5 Unconstrained Optimization.

A.6 Constrained Optimization.

A.7 Multi-Solution Problems.

A.8 Multi-Objective Optimization.

A.9 Dynamic Optimization Problems.

Index.


정보제공 : Aladin

관련분야 신착자료

딥노이드. 교육팀 (2021)
Patterson, Josh (2022)