HOME > Detail View

Detail View

Noetherian semigroup algebras

Noetherian semigroup algebras

Material type
단행본
Personal Author
Jespers, Eric. Oknin◆U0301◆ski, Jan , 1954-
Title Statement
Noetherian semigroup algebras / by Eric Jespers and Jan Okninski.
Publication, Distribution, etc
Dordrecht :   Springer ,   c2007.  
Physical Medium
ix, 361 p. ; 25 cm.
Series Statement
Algebras and applications ; v. 7
ISBN
9781402058097 (hbk.) 1402058098 (hbk.) 9781402058103 (e-book) 1402058101 (e-book)
Bibliography, Etc. Note
Includes bibliographical references (p. 343-352) and index.
Subject Added Entry-Topical Term
Semigroup algebras. Noetherian rings.
000 01095camuu22003257a 4500
001 000045402203
005 20071122170445
008 070801s2007 ne b 001 0 eng
010 ▼a 2007464089
015 ▼a GBA702722 ▼2 bnb
020 ▼a 9781402058097 (hbk.)
020 ▼a 1402058098 (hbk.)
020 ▼a 9781402058103 (e-book)
020 ▼a 1402058101 (e-book)
035 ▼a (KERIS)REF000013201683
040 ▼a UKM ▼c UKM ▼d BAKER ▼d BTCTA ▼d TXH ▼d UAF ▼d YDXCP ▼d DLC ▼d 244002
042 ▼a ukblsr ▼a lccopycat
050 0 0 ▼a QA251.5 ▼b .J48 2007
082 0 4 ▼a 512.27 ▼2 22
090 ▼a 512.27 ▼b J58n
100 1 ▼a Jespers, Eric.
245 1 0 ▼a Noetherian semigroup algebras / ▼c by Eric Jespers and Jan Okninski.
260 ▼a Dordrecht : ▼b Springer , ▼c c2007.
300 ▼a ix, 361 p. ; ▼c 25 cm.
440 0 ▼a Algebras and applications ; ▼v v. 7
504 ▼a Includes bibliographical references (p. 343-352) and index.
650 0 ▼a Semigroup algebras.
650 0 ▼a Noetherian rings.
700 1 ▼a Oknin◆U0301◆ski, Jan , ▼d 1954-

Holdings Information

No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Sejong Academic Information Center/Science & Technology/ Call Number 512.27 J58n Accession No. 151243836 Availability Available Due Date Make a Reservation Service B M

Contents information

Table of Contents

1. Introduction. 2. Prerequisites on semigroup theory. 2.1 Semigroups. 2.2. Uniform semigroups. 2.3 Full linear semigroup. 2.4 Structure of linear semigroups. 2.5 Closure. 2.6 Semigroups over a field. 3. Prerequisites on ring theory. 3.1 Noetherian rings and rings satisfying a polynomial identity. 3.2 Prime ideals. 3.3 Group algebras of polycyclic-by-finite groups. 3.4 Graded rings. 3.5 Gelfand-Kirillov dimension. 3.6 Maximal orders. 3.7 Principal ideal rings. 4. Algebras of submonoids of polycylic-by-finite groups. 4.1 Ascending chain condition. 4.2 The unit group. 4.3 Almost nilpotent case. 4.4 Structure theorem. 4.5 Prime ideals of K[S]. 4.6 Comments and problems. 5. General Noetherian semigroup algebras. 5.1 Finite generation of the monoid. 5.2 Necessary conditions. 5.3 Monomial semigroups and sufficient conditions. 5.4 Gelfand-Kirillov dimension. 5.5 Comments and problems. 6. Principal ideal rings. 6.1 Group algebras. 6.2 Matrix embedding. 6.3 Finite dimensional case. 6.4 The general case. 6.5 Comments and problems. 7. Maximal orders and Noetherian semigroup algebras. 7.1 Maximal orders and monoids. 7.2 Algebras of submonoids of abelian-by-finite groups. 7.3 Comments and problems. 8. Monoids of I-type. 8.1 A characterization. 8.2 Structure of monoids of I-type. 8.3 Binomial monoids are of I-type. 8.4 Decomposable monoids of I-type. 8.5 Algebras of monoids of I-type. 8.6 Comments and problems. 9. Monoids of skew type. 9.1 Definition. 9.2 Monoids of skew type and the cyclic condition. 9.3 Non-degenerate monoids of skew type. 9.4 Algebras of non-degenerate monoids of skew type. 9.5 The cancellative congruence and the prime radical. 9.6 Comments and problems. 10. Examples. 10.1 Monoids of skew type and the Gelfand-Kirillov dimension. 10.2 Four generated monoids of skew type. 10.3 Examples of Gelfand-Kirillov dimension 2. 10.4 Non-degenerate monoids of skew type of Gelfand-Kirillov dimension one. 10.5 Examples of maximal orders. 10.6 Comments. Bibliography. Index. Notation.


Information Provided By: : Aladin

New Arrivals Books in Related Fields