HOME > 상세정보

상세정보

Topics in linear algebra

Topics in linear algebra (4회 대출)

자료유형
단행본
개인저자
이의우.
서명 / 저자사항
Topics in linear algebra / 이의우 지음.
발행사항
서울 :   대선 ,   2005.  
형태사항
231 p. : 삽도 ; 26 cm.
ISBN
8995036842
일반주기
Index: p. 229-231  
000 00571camccc200205 k 4500
001 000045235786
005 20100807023222
007 ta
008 051101s2005 ulka 001c eng
020 ▼a 8995036842 ▼g 93410: ▼c \13,000
035 ▼a (KERIS)BIB000010209624
040 ▼a KORMARC ▼c KORMARC ▼d HYUA ▼d 241050 ▼d 244002
082 0 4 ▼a 512.5 ▼2 22
090 ▼a 512.5 ▼b 2005f
100 1 ▼a 이의우.
245 1 0 ▼a Topics in linear algebra / ▼d 이의우 지음.
260 ▼a 서울 : ▼b 대선 , ▼c 2005.
300 ▼a 231 p. : ▼b 삽도 ; ▼c 26 cm.
500 ▼a Index: p. 229-231

소장정보

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 세종학술정보원/과학기술실/ 청구기호 512.5 2005f 등록번호 151197374 도서상태 대출가능 반납예정일 예약 서비스 C

컨텐츠정보

저자소개

이의우(지은이)

정보제공 : Aladin

목차


목차
1 Introduction to Linear Systems = 7
 1.1 Vectors = 7
 1.2 Matrices = 13
 1.3 Systems of Linear Equations = 20
 1.4 Elementary Matrices = 26
2 Determinants = 35
 2.1 Cofactor Expansions = 35
 2.2 Properties of Determinants = 39
 2.3 Cramer's Rule = 47
3 Vector Spaces = 53
 3.1 Vector Spaces = 53
 3.2 Bases and Dimensions = 58
 3.3 Row Spaces and Column Spaces = 64
 3.4 Coordinates = 71
4 Linear Transformations = 79
 4.1 Linear Transformation = 79
 4.2 Matrix Representations = 88
 4.3 Similarity = 93
5 Orthogonality = 99
 5.1 Orthogonal Projections = 99
 5.2 The Gram-Schmidt Orthogonalization Process = 105
 5.3 Least Squares Solution = 114
 5.4 Orthogonal Matrices = 121
6 Eigenvalues = 133
 6.1 Eigenvalues and Eigenvectors = 133
 6.2 Complex Eigenvalues = 140
 6.3 Hermitian and Unitary Matrices = 147
 6.4 Diagonalizability = 152
 6.5 Quadratic Forms = 163
7 Approximating Eigenvalues = 175
 7.1 Vector and Matrix Norms = 175
 7.2 Numerical Methods for Eigenvalues = 186
  7.2.1 Power Methods = 186
  7.2.2 Jacobi Method for Symmetric Matrices = 189
  7.2.3 QR Algorithm = 192
8 Matrices and Differential Equations = 197
 8.1 Linear Systems with Constant Coefficients = 197
 8.2 Coordinate Changes = 201
 8.3 The Eigenvalue-Eigenvector Method = 204
 8.4 The Matrix Exponentials = 209
 8.5 The Principal Matrix Solution = 214
 8.6 Reduction to Canonical Forms = 218
 8.7 Higher Order Systems = 225


관련분야 신착자료