HOME > Detail View

Detail View

Homogeneous spaces, Tits buildings, and isoparametric hypersurfaces

Homogeneous spaces, Tits buildings, and isoparametric hypersurfaces

Material type
단행본
Personal Author
Kramer, Linus , 1964-.
Title Statement
Homogeneous spaces, Tits buildings, and isoparametric hypersurfaces / Linus Kramer.
Publication, Distribution, etc
Providence, R.I. :   American Mathematical Society ,   c2002.  
Physical Medium
xv, 114 p. ; 26 cm.
Series Statement
Memoirs of the American Mathematical Society , 0065-9266 ; no. 752
ISBN
0821829068 (alk. paper)
General Note
"Volume 158, number 752 (third of 4 numbers)."  
Bibliography, Etc. Note
Includes bibliographical references (p. 110-114).
Subject Added Entry-Topical Term
Buildings (Group theory) Global differential geometry. Finite generalized quadrangles. Homogeneous spaces.
000 01021pamuu22002774a 4500
001 000045232369
005 20060220104332
008 020226s2002 riu b 000 0 eng
010 ▼a 2002018395
020 ▼a 0821829068 (alk. paper)
040 ▼a DLC ▼c DLC ▼d DLC ▼d 244002
042 ▼a pcc
082 0 0 ▼a 510 s ▼a 512/.2 ▼2 21
090 ▼a 512.2 ▼b K89h
100 1 ▼a Kramer, Linus , ▼d 1964-.
245 1 0 ▼a Homogeneous spaces, Tits buildings, and isoparametric hypersurfaces / ▼c Linus Kramer.
260 ▼a Providence, R.I. : ▼b American Mathematical Society , ▼c c2002.
300 ▼a xv, 114 p. ; ▼c 26 cm.
440 0 ▼a Memoirs of the American Mathematical Society , ▼x 0065-9266 ; ▼v no. 752
500 ▼a "Volume 158, number 752 (third of 4 numbers)."
504 ▼a Includes bibliographical references (p. 110-114).
650 0 ▼a Buildings (Group theory)
650 0 ▼a Global differential geometry.
650 0 ▼a Finite generalized quadrangles.
650 0 ▼a Homogeneous spaces.

Holdings Information

No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Sejong Academic Information Center/Science & Technology/ Call Number 512.2 K89h Accession No. 151197681 Availability Available Due Date Make a Reservation Service C M

Contents information

Table of Contents

The Leray-Serre spectral sequence Ranks of homotopy groups Some homogeneous spaces Representations of compact Lie groups The case when $G$ is simple The case when $G$ is semisimple Homogeneous compact quadrangles Homogeneous focal manifolds Bibliography.


Information Provided By: : Aladin

New Arrivals Books in Related Fields