
000 | 00821camuu22002534a 4500 | |
001 | 000045221768 | |
005 | 20060306113004 | |
008 | 030813s2004 gw a b 001 0 eng | |
010 | ▼a 2003061682 | |
020 | ▼a 3540009353 | |
035 | ▼a (KERIS)REF000009624524 | |
040 | ▼a DLC ▼c DLC ▼d DLC ▼d 211009 | |
042 | ▼a pcc | |
050 | 0 0 | ▼a QA76.889 ▼b .A42 2004 |
082 | 0 0 | ▼a 004.1 ▼2 22 |
090 | ▼a 004.1 ▼b A316r | |
100 | 1 | ▼a Al-Rabadi, Anas N. , ▼d 1973-. |
245 | 1 0 | ▼a Reversible logic synthesis : ▼b from fundamentals to quantum computing / ▼c Anas N. Al-Rabadi. |
260 | ▼a Berlin ; ▼a New York : ▼b Springer-Verlag , ▼c 2004. | |
300 | ▼a xxiii, 427 p. : ▼b ill. ; ▼c 24 cm. | |
504 | ▼a Includes bibliographical references and index. | |
650 | 0 | ▼a Quantum computers. |
945 | ▼a KINS |
소장정보
No. | 소장처 | 청구기호 | 등록번호 | 도서상태 | 반납예정일 | 예약 | 서비스 |
---|---|---|---|---|---|---|---|
No. 1 | 소장처 과학도서관/Sci-Info(2층서고)/ | 청구기호 004.1 A316r | 등록번호 121121290 | 도서상태 대출가능 | 반납예정일 | 예약 | 서비스 |
컨텐츠정보
목차
1 Introduction.- 1.1 Scope of the Work.- 1.2 Organization of the Book.- 2 Fundamentals.- 2.1 Normal Galois Forms in Logic Synthesis.- 2.2 Invariant Multi-Valued Families of Generalized Spectral Tranforms.- 2.2.1 General Notation for Operations on Transform Matrices.- 2.2.2 Invariant Families of Multi-Valued Spectral Transforms.- 2.3 Summary.- 3 New Multiple-Valued S/D Trees and their Canonical Galois Field Sum-Of-Product Forms.- 3.1 Green/Sasao Hierarchy of Binary Canonical Forms.- 3.2 Binary S/D Trees and their Inclusive Forms.- 3.3 Ternary S/D Trees and their Inclusive Forms and Generalized Inclusive Forms.- 3.3.1 Ternary S/D Trees and Inclusive Forms.- 3.3.2 Enumeration of Ternary Inclusive Forms.- 3.4 Properties of TIFs and TGIFs.- 3.4.1 Properties of TIFs.- 3.4.2 Properties of TGIFs.- 3.5 An Extended Green/Sasao Hierarchy with a New Sub-Family for Ternary Reed-Muller Logic.- 3.6 Quaternary S/D Trees.- 3.7 An Evolutionary Algorithm for the Minimization of GFSOP Expressions Using IF Polarity from Multiple-Valued S/D Trees.- 3.8 Summary.- 4 Novel Methods For the Synthesis of Boolean and Multiple-Valued Logic Circuits Using Lattice Structures.- 4.1 Symmetry Indices.- 4.2 Fundamental (2,2) Two-Dimensional Lattice Structures.- 4.3 (3,3) Two-Dimensional Lattice Structures.- 4.4 New Three-Valued Families of (3,3) Three-Dimensional Shannon and Davio Lattice Structures.- 4.4.1 Three-Dimensional Lattice Structures.- 4.4.2 New (3,3) Three-Dimensional Invariant Shannon Lattice Structures.- 4.4.3 New (3,3) Three-Dimensional Invariant Davio Lattice Structures.- 4.5 An Algorithm for the Expansion of Ternary Functions Into (3,3) Three-Dimensional Lattice Structures.- 4.6 Example of the Implementation of Ternary Functions Using the New Three-Dimensional Lattice Structures.- 4.7 ISID: Iterative Symmetry Indices Decomposition.- 4.8 Summary.- 5 Reversible Logic: Fundamentals and New Results.- 5.1 Fundamental Reversible Logic Primitives and Circuits.- 5.2 The Elimination of Garbage in Two-Valued Reversible Circuits.- 5.3 Combinational Reversible Circuits.- 5.4 Novel General Methodology for the Creation and Classification of New Families of Reversible Invariant Multi-Valued Shannon and Davio Spectral Transforms.- 5.5 The Elimination of Garbage in Multiple-Valued Reversible Circuits.- 5.6 Summary.- 6 Reversible Lattice Structure.- 6.1 A General Algorithm for the Creation of Two-Valued and Multiple-Valued Reversible Lattice Structures.- 6.2 Summary.- 7 Novel Reconstructability Analysis Structures and their Reversible Realizations.- 7.1 New Type of Reconstructability Analysis: Two-Valued Modified Reconstructability Analysis (MRA).- 7.2 Multiple-Valued MRA.- 7.3 Reversible MRA.- 7.4 Summary.- 8 New Reversible Structures: Reversible Nets, Reversible Decision Diagrams, and Reversible Cascades.- 8.1 Reversible Nets.- 8.2 Reversible Decision Diagrams.- 8.3 Reversible Cascades.- 8.3.1 The Realization of GFSOP Expressions Using Reversible Cascades.- 8.4 Summary.- 9 Initial Evaluation of the New Reversible Logic Synthesis Methodologies.- 9.1 Complete Examples.- 9.2 Initial Comparison.- 9.3 Summary.- 10 Quantum Logic Circuits for Reversible Structures.- 10.1 Notation for Two-Valued and Multiple-Valued Quantum Circuits.- 10.2 Quantum Circuits.- 10.3 Summary.- 11 Quantum Computing: Basics and New Results.- 11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis.- 11.1.1 Mathematical Decompositions for Quantum.- 11.2 New Two-Valued Quantum Evolution Processes.- 11.3 Novel Representations for Two-Valued Quantum Logic: Two-Valued Quantum Decision Trees and Diagrams.- 11.4 Fundamentals of Multiple-Valued Quantum Computing.- 11.5 New Multiple-Valued Quantum Chrestenson Evolution Process, Quantum Composite Basis States, and the Multiple-Valued Einstein-Podolsky-Rosen (EPR) Basis States.- 11.6 New Multiple-Valued Quantum Evolution Processes, Generalized Permuters, and their Circuit Analysis.- 11.7 Novel Representations for Multiple-Valued Quan
정보제공 :
