
000 | 01382namuu2200325ia 4500 | |
001 | 000045215673 | |
005 | 20051223142650 | |
008 | 050630s2005 gw b 001 0 eng d | |
020 | ▼a 3540203648 | |
024 | 3 | ▼a 9783540203643 |
035 | ▼a (KERIS)REF000012345013 | |
040 | ▼a LWU ▼c LWU ▼d BAKER ▼d 211009 | |
082 | 0 4 | ▼a 512.7 ▼2 22 |
090 | ▼a 512.7 ▼b M278i2 | |
100 | 1 | ▼a Manin, Yuri Ivanovic. |
245 | 1 0 | ▼a Introduction to modern number theory : ▼b fundamental problems, ideas and theories / ▼c Yuri Ivanovic Manin, Alexei A. Panchishkin. |
246 | 1 5 | ▼a Number theory I |
250 | ▼a 2nd ed. | |
260 | ▼a Berlin ; ▼a New York : ▼b Springer , ▼c c2005. | |
300 | ▼a xv, 514 p. : ▼b ill. ; ▼c 25 cm. | |
440 | 0 | ▼a Encyclopaedia of mathematical sciences , ▼x 0938-0396 ; ▼v v. 49 |
500 | ▼a Issued originally as: Teorieiia chisel 1, v. 49 of the serial: Itogi i nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravlenieiia. | |
500 | ▼a Original Russian version of the 1st ed. was published by VINITI, Moscow in 1990. | |
500 | ▼a Rev. and updated version of Number theory I. | |
504 | ▼a Includes bibliographical references (p. [461]-502) and index. | |
650 | 0 | ▼a Number theory. |
700 | 1 | ▼a Panchishkin, A. A. ▼q (Aleksei Alekseevich) |
730 | 0 | ▼a Teorieiia chisel 1. ▼l English. |
945 | ▼a KINS |
Holdings Information
No. | Location | Call Number | Accession No. | Availability | Due Date | Make a Reservation | Service |
---|---|---|---|---|---|---|---|
No. 1 | Location Science & Engineering Library/Sci-Info(Stacks2)/ | Call Number 512.7 M278i2 | Accession No. 121118801 | Availability Available | Due Date | Make a Reservation | Service |
Contents information
Table of Contents
Problems and Tricks.- Number Theory.- Some Applications of Elementary Number Theory.- Ideas and Theories.- Induction and Recursion.- Arithmetic of algebraic numbers.- Arithmetic of algebraic varieties.- Zeta Functions and Modular Forms.- Fermat's Last Theorem and Families of Modular Forms.- Analogies and Visions.- Introductory survey to part III: motivations and description.- Arakelov Geometry and Noncommutative Geometry (d'apres C. Consani and M. Marcolli, [CM]).
Information Provided By: :
